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1 Introduction

1.1 Electronic Design Automation (EDA)

In the modern world, electronic devices surround us in our everyday life. Most recent
advances are the numerous mobile communication devices providing more comfort
and flexibility. During the last decades, both the number and the complexity of these
devices grew rapidly.

Till the 1970s, electronic devices were manually designed. Due to the increasing com-
plexity of the electronic circuits, the need for automation of the design process raised
significantly. Since the mid 1970s computers and algorithms are powerful enough to
support the engineers in the development of electronic systems. This computer aided
engineering of electronic circuits is called electronic design automation (EDA).

A driving force for EDA was the design of integrated circuits (IC). In ICs, semicon-
ductor based electronic components, mainly transistors and diodes, are integrated into
a single chip. Due to the increasing miniaturization in this area the amount of com-
ponents per chip exponentially increased, up to more than a billion transistors per
chip today (Intel Core i7). Due to the rapid increase in the number of circuit compo-
nents, computer aided support is required. This area of EDA is called very large scale
integration (VLSI).

Another type of electronic circuits are printed circuit boards (PCB). In this technology,
heterogeneous components such as resistors, capacities or chips are placed on a sub-
strate. The components are connected by copper included in the substrate. Compared
to VLSI, the number of components in a PCB is much smaller, usually only up to a few
thousand. However, on PCBs the involved components are much more heterogeneous.
Hence, there is less automation in the design of PCBs. Usually the placement is done
manually, while there are elaborated auto routers to layout the wiring between the
components.

A relatively new technique to integrate an electronic system is 2.5D System-in-Package
(SiP). In SiPs, PCB substrates are vertically stacked over each other to gain additional
miniaturization. The lack of EDA tools for SiPs gave raise to this thesis. System-in-
Packages are described in detail in Section 1.2.

The process of electronic circuit design passes through several steps. We summarize
the main steps here, for details see [Sait; Youssef 1999].
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1 Introduction

∙ In the first step, called logical design, the schematic of the electronic circuit is
created. The engineer defines the electronic components of the circuit and how
their pins are connected. Although EDA can support this step by simulating the
logical circuit, this step has to be done manually by an engineer.

∙ The next step is the physical design. This step includes the choice of the con-
crete packages for each component and the layout of the circuit. It is complex
and very time consuming but, in contrast to the architectural design, can be bet-
ter automatized. Therefore, most effort in EDA was put on this step. After the
assignment of the packages, the layout of a circuit is defined by the coordinates
of the components and the routing of the nets. This problem is almost com-
putational intractable and therefore separated into subproblems that are itself
NP-hard (see [Lengauer 1990]).

In the placement, the components are assigned to geometric coordinates. In this
process, no exact routing of the nets is performed. The aim of this step is to make
the circuit small and to create some routing-aware placement. While in manual
placement the engineer tries to keep connected components close together, auto-
matic placer usually use abstract wire length models that can be easily computed
(see Section 1.3). The amount of software support for the placement varies for
different technologies.

In the routing, the positions of the components and thus of the pins are fixed and
the detailed routing of the nets is performed. This area of EDA is well analyzed
and sophisticated commercial auto routers exist.

∙ The last validation step is to verify a placed circuit regarding its thermical and
signal properties. This can be done by measuring a physical prototype. However,
EDA tools also support this step by detailed physical simulations.

1.2 System-in-Package

2.5D System-in-Package (SiP) is a relatively new integration concept for miniatur-
ization of electronic circuits. In this concept, discrete components are placed onto
substrates that are vertically stacked into a single package. While keeping the flexi-
bility and techniques of standard PCB layouts, the use of the third dimension in SiPs
offers a higher level of miniaturization. SiPs also require less advanced production
techniques than ICs and are thus more cost-effective. Furthermore, SiPs can be used
as a single component within standard PCB placements.

SiPs have recently been studied in the literature. Engineering aspects are analyzed in
[Polityko 2008], whereas modeling aspects can be found in [Richter et al. 2007]. For
recent advances in placement automation for SiPs, see [Berger 2010].
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1.2 System-in-Package

(a) Folded flex. (b) Solder balls.

Figure 1.1: Different technologies for stacking modules vertically.

The most common techniques for vertically stacking substrate modules are folded flex
and solder ball connections. Folded flex means to place the components on a flexible
substrate and this substrate is folded in s-shape, see Figure 1.1a. Solder balls mean
to place the components on standard PCB boards that are vertically connected with
solder balls, see Figure 1.1b.

SiPs are related to the previous technologies as PCB, but nevertheless considerably
different. In contrast to the sophisticated support tools for PCB and VLSI design, there
is a lack of tools for SiP-layout, see [Polityko 2008]. The concept of such a support
tool has been shown in [Richter et al. 2007]. Different requirements for the layout of
System-in-Packages have to be regarded.

∙ In SiPs, there are vertical interconnections (VIC) between the vertically stacked
modules. Typically these interconnections are solder balls or a copper wire within
a folded substrate, but also other types exist. In particular, solder balls have to
be treated in a special way, as they are discrete components that do not exist in
logical design, but appear during the physical placement step and change their
lateral size depending on their height.

∙ SiPs use the third dimension. Thus, in the physical design step, the components
have to be assigned to the different module sides before the two-dimensional
placement on each substrate can be done. In the additional partitioning step,
the algorithm or the engineer aims to optimize contradicting objectives. The
lateral size and the height of the SiP should be small. However, as there is
no detailed placement in this step, the lateral size can only be estimated. The
number of VICs is also to be minimized. This is due to the fact that vertical
interconnections require space, but also that electrical signals should not be
routed through VICs.

∙ SiPs usually contain only up to few hundred components and thus significantly
less components than VLSI designs and still less components than typical PCB
layouts. However, in contrast to VLSI, the components in SiPs are heterogeneous
and often of very different size. In contrast to typical PCB layouts, there is a
stronger focus on miniaturization. Therefore, beside the location also the rotation
of the components is crucial in the SiP placement.
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1 Introduction

In this thesis we focus on the placement step after the partitioning was performed.
This step is the rectangle placement problem and described in Section 1.3.

1.3 Rectangle Placement Problem in EDA

The rectangle placement problem is the placing of the components on one module side.
The components are a set of fixed sized, rectangular objects. Each component has a
set of pins with fixed positions relative to a reference point of the component. The
pins are connected by nets. The goal is to find a placement of the components on the
module that has a short total weighted length of all nets and a small bounding box of
all components. Of course the components are not allowed to overlap. The components
are also allowed to be rotated. But in practice, usually not all rotations are possible,
instead they often can only be rotated by a multiple of 45∘ or even a multiple of 90∘.

In the final placement, a complex routing of the nets is necessary. For routing, very
sophisticated commercial tools exist. However, the complete routing process is too
time consuming to be done within the placement algorithm. Instead, surrogate net
models are used to estimate the net length of a placement. The detailed routing is
finally done in a post processing step.

The most common models are the half perimeter wire length [Nam; Cong 2007], the
clique model and the star model [Viswanathan; Chu 2004].

Half Perimeter The half perimeter wire length is defined as the half perimeter of the
rectangular container containing all pins of the net. The main advantage of this
model is that it can be modeled as a linear program.

Clique Model In the clique model, a net is represented by the pairwise connections
of its pins. The net length is the sum of all weighted pairwise connection lengths
in squared Euclidean distance. This model can be formulated as a quadratic
positive semidefinite function of the pin positions.

Star Model In the star model, a net with more than three pins is represented by
connecting all pins to an additional introduced connection point, denoted as the
net center. The net length is the sum of the squared Euclidean distances of the
pin positions to the net center.

In [Viswanathan; Chu 2004] it is shown that the clique model and the star model
are essentially equivalent (see Lemma 3.11). We mainly use the clique model in this
thesis. By stronger penalizing of larger nets this model balances the length of different
nets. Furthermore, this model yields a smooth, convex objective function in non-linear
programs.
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1.3 Rectangle Placement Problem in EDA

1.3.1 Approaches to Auto Placers

The placement problem is of a high practical relevance and thus it is extensively
studied in the literature. Different approaches have been proposed and have been used
in academic and commercial software tools. A recent survey is in [Nam; Cong 2007].

Algorithms for the placement problem are called auto placers. There are two main
approaches, discrete and continuous placers.

Discrete placers work on a discrete representation of the placement. The advantage of
discrete techniques is that the non-overlapping of the components can be inherently
encoded in the placement.

Common discrete techniques are, e.g., metaheuristics as local search, simulated an-
nealing or evolutionary algorithms. Starting from randomly generated solutions, they
iteratively try to improve the objective by changing the solutions. These placers work
well for small instances and can even tackle larger instances with several hundreds of
components. However, iterative solvers have a local view on the problem. They tend to
make big decisions as the placement of large components almost randomly at the be-
ginning and, usually, are not able to revise them during the algorithm. While achieving
a good packing density, such solvers generate solutions with poor wire length.

Other discrete techniques are constraint programming or mixed integer programming.
They lead to high quality placements and, for small instances, can even proof their
optimality. However, due to their memory consumption and their running time, these
algorithms are impractical for instances with larger number of components.

Continuous or analytical placer usually formulate the placement problem as a con-
strained non-linear program. Non-linear solvers can handle significantly larger in-
stances than discrete solvers. However, by enforcing the non-overlapping of compo-
nents, the problem becomes highly non-convex and has many local optima. Further-
more, allowing components to be rotated significantly complicates the non-linear pro-
gram. Hence, analytical placers are usually applied for VLSI design, where the rotation
is not considered and non-overlapping is replaced by the concept of density and later
heuristically created.

For very large instances, the placement problem usually cannot be tackled directly.
Instead, hierarchical algorithms are applied. They separate the problem into sub-
problems, solve them independently and unify the results.

1.3.2 Lack of Algorithms for Large SiP-Instances

SiP-Instances lead to placement problems with up to a few hundred components.
Consequently after the partitioning step usually no more than 250 components have
to be placed on one module side. On the one hand, these instances are too large for
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1 Introduction

constraint programming and mixed integer programming solvers. On the other hand,
metaheuristics generate solutions of poor wire length.

Analytical algorithms handle global objectives as the wire length more naturally. How-
ever, as the components are too heterogeneous, their non-overlapping cannot be en-
forced heuristically in a post-processing step as for VLSI placement. Modeling the non-
overlapping constraints within the non-linear model yields highly non-convex prob-
lems. Hence, standard local non-linear solvers most likely converge to a poor local
optimum.

There exist global optimization techniques as branch and bound or interval arithmetic
that find the provable optimal solution to non-convex optimization problems. However,
these approaches have unacceptable running times for instances appearing in practice.
Another approach are multiple shooting algorithms. They do not guarantee global
optimality, but try to overcome poor local optima by doing several local optimization
runs from different starting points. However, the selection of good starting points is
crucial for their success.

To solve practical problems, the structure of the placement problem has to be ex-
ploited. In this thesis we present an algorithm that uses a combination of smoothing
techniques, global optimization techniques and further methods to achieve good place-
ments with respect to the wire length in reasonable time for typical electronic circuits
of System-in-Packages. A survey of the rounded rectangle algorithm is given in Sec-
tion 1.4.

1.4 Rounded Rectangle Algorithm

In this chapter we give a brief survey of the rounded rectangle algorithm and its main
principles. Technical details are presented in later chapters of this thesis.

1.4.1 Abstraction as Circles

Our rounded rectangle algorithm represents an analytical placer for the rectangle
placement problem. Like all successful solvers, it has to exploit the special structure
of the problem.

For System-in-Packages there are up to a few hundred components of very different
size. Hence, the rotation and the non-overlapping is important and we have to deal with
these aspects explicitly. Unfortunately, the rotation of rectangles leads to many local
optima, see Figure 1.2. However, the rotation and non-overlapping of the components
can be decoupled by modeling the rectangles as circles. If we then enforce the non-
overlapping of the circles, the rectangles can freely rotate inside these circles.

6



1.4 Rounded Rectangle Algorithm

(a) Global optimum. (b) Local optimum. (c) No local optimum if the
rectangles are enclosed by
circles.

Figure 1.2: Enclosing rectangles by circles decouples the rotation from the non-
overlapping. This reduces the number of local optima.

By this decoupling, the number of local optima is reduced, as displayed in Figure 1.2.
Circles are less likely to interlock than rectangles. In Figure 1.3 for the rectangles the
algorithm gets stuck in a local optimum. However, if the connection is strong enough,
for circles this is no local optimum.

The algorithm starts with an abstract model, where we enclose all components by
circles. In the initial phase, we try to find a good placement of these circles without
overlap. This phase is very important, as it has a big impact on the final placement.
Related problems were already analyzed in the literature. While there are few theoret-
ical results for these problems, several heuristics were developed, e.g. [Anjos 2001] and
[Anjos; Vannelli 2006]. We give a survey of these techniques in Chapter 7 and apply
them to the rectangle placement problem for System-in-Packages.

1.4.2 Transformation from Circles to Rectangles

After the initial phase, we have an overlapping free placement of the enclosing circles
of the components. However, at the end of the algorithm, a placement of rectangular
components is desired. Hence, we have to transform the circles into rectangles.

Therefore, we introduce the concept of rounded rectangles. Rounded rectangles are
rectangles whose corners are replaced by circle quarters. Circles and rectangles can
be modeled as rounded rectangles. A circle is a rounded square with maximal corner
radius, while a standard rectangle is a rectangle with corner radius zero. Figure 1.4
shows the transformation of a circle to a rectangle via rounded rectangles.

An important property of electronic circuits is that the rotation of the components
is only allowed to be a multiple of 45∘ or 90∘. In System-in-Packages, usually only
multiples of 90∘ are allowed. During the transformation from circles to rectangles, we
also increase a penalty for the deviation of the component rotation from an orthogonal
rotation. At the end of the transformation, a component is modeled as a rounded
rectangle with edges parallel to the coordinate axes.

7



1 Introduction

(a) Rectangles can interlock. Independent of
the strength of the connection between 𝐴
and 𝐵, the algorithm gets stuck.

(b) Circles do not interlock. If the connection
between 𝐴 and 𝐵 is strong enough, they
can overcome the interlock.

(c) Rectangles can interlock. It is easy to visu-
alize that the connection length could be
improved by moving 𝐴 to the right. How-
ever, with fixed rotations the algorithm
gets stuck.

(d) Circles do not interlock. The connection
between 𝐴 and 𝐵 pushes the other circle
to the side to come closer to 𝐵.

Figure 1.3: The circle placement problem has less local optima than the rectangle
placement problem.

Figure 1.4: Transformation from circles to rectangles via rounded rectangles.
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1.5 Thesis Outline

In System-in-Packages, there are few large components and many small components
of approximately equal size. The relative placement of these large components is im-
portant for the placement of the small components, while a rough placement of the
smaller components is sufficient for a good placement of the larger ones. In particular,
while refining larger components from circles to rectangles, the rotation and relative
placements of the smaller components can be necessary to chance. Hence, it is ad-
vantageous to keep the smaller components as circles while transforming the larger
ones from circles to rectangles. After this transformation, the rotations of the large
components are kept fixed and the smaller components are transformed from circles
to rectangles.

1.5 Thesis Outline

In this section we give a brief overview of this thesis. In the different chapters we
analyze different aspects of the rounded rectangle algorithm surveyed in Section 1.4.

In Chapter 2 some basic mathematical concepts used throughout this thesis are intro-
duced. Furthermore, we introduce notation and describe the problem instances and
the computational environment that we use for our numerical evaluations.

In Chapter 3 we address the circle rotation problem. This problem is to rotate circles
that have fixed center positions in order to minimize their wire length. We show that
this problem is essentially equivalent to the Hermitian minimization problem already
studied in literature. We proof that it is NP-hard. We further develop different models
and a custom solution algorithm for the circle rotation problem. In a detailed nu-
merical analysis, we show that the custom solution algorithm generates high quality
solutions computationally efficient in order to use it as an essential subroutine within
the rounded rectangle algorithm. Furthermore, by convexification, we develop an algo-
rithm to generate solutions with an absolute a-priori and a-posteriori approximation
quality.

In Chapter 4 we develop a branch and bound algorithm for the circle rotation problem.
Applying computational geometry algorithms, we develop a novel domain reduction
algorithm for the circle rotation problem. Based on results of Chapter 3, we derive
problem adapted fast lower and upper bound evaluations. With these ingredients we
show in an extensive numerical evaluation that the algorithm is able to solve even
large practical problem instances up to global optimality in short running time.

In Chapter 5 we consider the circle rotation problem for one net. We show that this
problem is equivalent to placing a point with minimal squared Euclidean distance
to a set of circles in the plane. We state a convex approximation of the problem
and analyze the relations of their optimal solutions. Based on this convexification, we
identify instances for which the problem can be solved to optimality. Finally, we state
a global branch and bound algorithm for this problem.

9



1 Introduction

In Chapter 6 we consider the problem to place identical circles of one net. We do an
asymptotic analysis for increasing number of circles and show asymptotically that wire
length optimal packings are also area optimal. However, area optimal packings are not
wire length optimal. This analysis supports to focus on the wire length optimization
in this thesis.

In Chapter 7 we analyze the circle placement problem. This problem is to place con-
nected circles without overlapping in the plane such that the wire length is minimized.
This problem is solved as an initial step in the rounded rectangle algorithm. In a first
step, we apply the attractor repeller model known for facility layout. We create a novel
scaling invariant version of this attractor repeller model and show in a numerical eval-
uation that it is significantly superior to previously known models. Furthermore, based
on results of the circle rotation problem, we apply local search and monotonic basin
hopping methods to overcome local optima.

In Chapter 8 the rounded rectangle algorithm is stated. Based on the results of Chap-
ter 7, we generate a good initial solution for circular component approximations. The
circles of this initial solution are successively refined to rectangles by solving a sequence
of non-linear programs. We show that the non-linear formulation satisfies the impor-
tant Mangasarian-Fromovitz constraint qualification. Furthermore, we evaluate the
algorithm numerically and show that it generates high quality solutions for practical
problem instances in short time.

10



2 Notation and Conventions

In this chapter we introduce the basic mathematical concepts used in this thesis.
Furthermore, we describe the problem instances and the computational environment
that we use for the numerical evaluations.

In Section 2.1 we summarize the main properties of complex numbers. In this thesis we
state most functions as real valued functions on a complex vector space. To consider
real derivatives of such functions, the Wirtinger calculus is introduced in Section 2.2.
In Section 2.3 we state properties of univariate and multivariate complex quadratic
functions.

In Section 2.4 we survey the theory of non-linear optimization applied in this thesis.
We give a survey of the Karush-Kuhn-Tucker conditions, constraint qualifications and
theory of duality. In Section 2.5 we summarize the concepts and results for the exterior
penalty function approach to constrained optimization. In Section 2.6 the block co-
ordinate descent method for non-linear programs is introduced. We show under some
assumptions, how the Lagrange multipliers of the optimal solution are computed.

The clique wire length model we use in this thesis is defined in Section 2.7.

In Section 2.8 we describe the problem instances used for numerical evaluations. In
Section 2.9 the computational environment is described.

2.1 Complex Numbers

We give a brief introduction to complex numbers.

Definition 2.1 (Complex Number). By introducing a value 𝚤 with 𝚤2 = −1 the field
of complex numbers is

C := {𝑎+ 𝚤𝑏 : 𝑎, 𝑏 ∈ R}

with addition (𝑎+ 𝚤𝑏)+(𝑐+ 𝚤𝑑) = (𝑎+𝑐)+ 𝚤(𝑏+𝑑) and multiplication (𝑎+ 𝚤𝑏) ·(𝑐+ 𝚤𝑑) =
(𝑎𝑐− 𝑏𝑑) + 𝚤(𝑎𝑑+ 𝑏𝑐).

11



2 Notation and Conventions

The representation 𝑎+𝚤𝑏 is denoted as Cartesian form. The real numbers are embedded
in the complex numbers by representing 𝑎 ∈ R as 𝑎+ 𝚤0 ∈ C. Division of two complex
numbers can be done with non-zero nominator by

𝑎+ 𝚤𝑏

𝑐+ 𝚤𝑑
= (𝑎+ 𝚤𝑏)(𝑐− 𝚤𝑑)

𝑐2 + 𝑑2 = 𝑎𝑐+ 𝑏𝑑

𝑐2 + 𝑑2 + 𝚤
𝑏𝑐− 𝑎𝑑
𝑐2 + 𝑑2 .

Definition 2.2. The following notations are defined:

∙ The norm or magnitude is |𝑎+ 𝚤𝑏| =
√
𝑎2 + 𝑏2.

∙ The real part is ℜ(𝑎+ 𝚤𝑏) = 𝑎.
∙ The imaginary part is ℑ(𝑎+ 𝚤𝑏) = 𝑏.
∙ The conjugate of a complex number is 𝑎+ 𝚤𝑏 = 𝑎− 𝚤𝑏.

The set C is isomorphic to R2 by the natural isomorphism of identifying the complex
number 𝑎 + 𝚤𝑏 ∈ C with the point (𝑎, 𝑏) ∈ R2. Then adding a complex number 𝑎 + 𝚤𝑏
geometrically is a translation by (𝑎, 𝑏) and conjugation of a complex number means
reflection on the 𝑦-axis.

As each point in the plane can be represented by polar coordinates, the same holds
for complex numbers.

Definition 2.3 (Polar Form). The complex number 𝑧 = 𝑎+ 𝚤𝑏 ∈ C can be written in
polar form as

𝑧 = 𝑟 cos(𝜙) + 𝚤𝑟 sin(𝜙) = 𝑟 exp(𝚤𝜙)

where 𝑟 = |𝑧| ≥ 0 and the angle is defined as 𝜙 = arg 𝑧.

Theorem 2.4. Multiplication and division in polar form can be done by

(𝑟 exp(𝚤𝜙)) · (𝑠 exp(𝚤𝜓)) = 𝑟𝑠 exp(𝚤(𝜙+ 𝜓)),
𝑟 exp(𝚤𝜙)
𝑠 exp(𝚤𝜓) = 𝑟

𝑠
exp(𝚤(𝜙− 𝜓)) if 𝑠 > 0.

By the multiplication in polar form it can be seen that multiplication with a complex
number 𝑟 exp(𝚤𝜙) is a rotation by 𝜙 and scaling by 𝑟.

To state some computation rules, let now be 𝑎 ∈ R and 𝑤, 𝑧 ∈ C. Then ℜ(𝑎𝑧) = 𝑎ℜ(𝑧),
ℜ(𝑧 + 𝑤) = ℜ(𝑧) + ℜ(𝑤), ℑ(𝑎𝑧) = 𝑎ℑ(𝑧), ℑ(𝑧 + 𝑤) = ℑ(𝑧) + ℑ(𝑤). Furthermore,
𝑧 · 𝑤 = 𝑧 · 𝑤, 𝑧 + 𝑤 = 𝑧 + 𝑤, 2ℜ(𝑧) = 𝑧 + 𝑧, 2𝚤ℑ(𝑧) = 𝑧 − 𝑧, 𝑧𝑧 = |𝑧|2 and 𝑧 = 𝑧 if
and only if 𝑧 ∈ R.

We now consider the set C𝑛.

∙ C𝑛 is a 𝑛-dimensional C vector space.
∙ C𝑛 is a 2𝑛-dimensional R vector space and isomorphic to R2𝑛 by 𝜃 : C𝑛 → R2𝑛,
𝜃(𝑤1, . . . , 𝑤𝑛) = (ℜ(𝑤1),ℑ(𝑤1), . . . ,ℜ(𝑤𝑛),ℑ(𝑤𝑛)).
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2.1 Complex Numbers

We now consider scalar products.

∙ The scalar product of the R vector space R𝑛 is ⟨𝑥,𝑦⟩ = 𝑦𝑇 𝑥 = ∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖.

∙ The scalar product of the C vector space C𝑛 is ⟨𝑤, 𝑧⟩C = 𝑧𝐻𝑤 = ∑︀𝑛
𝑖=1 𝑤𝑖𝑧𝑖.

∙ The scalar product of the R vector space C𝑛 is implied by the isomorphism 𝜃 as

⟨𝑤, 𝑧⟩R =
𝑛∑︁

𝑖=1
ℜ(𝑤𝑖)ℜ(𝑧𝑖) + ℑ(𝑤𝑖)ℑ(𝑧𝑖)

=
𝑛∑︁

𝑖=1
ℜ(𝑤𝑖𝑧𝑖) = ℜ

(︃
𝑛∑︁

𝑖=1
𝑤𝑖𝑧𝑖

)︃
= ℜ(𝑧𝐻𝑤) = ℜ(⟨𝑤, 𝑧⟩C)

Note that concepts as linear dependency depend on the underlying field. So two vectors
in C𝑛 can be linear independent if we consider the R vector space and linear dependent
if we consider the C vector space. To distinguish these concepts, where important we
say that vectors are R linear independent resp. C linear independent.

Sometimes we need a vector where one coordinate is removed. This notation is intro-
duced in Definition 2.5.
Definition 2.5. For a vector 𝑧 ∈ C𝑛 denote 𝜋𝑘(𝑧) = (𝑧1, . . . , 𝑧𝑘−1, 𝑧𝑘+1, . . . , 𝑧𝑛) the
vector with removed 𝑘-th coordinate.

In this thesis we often require complex numbers to lie within the unit circle or on the
boundary of the unit circle.
Definition 2.6. We define the following sets

𝒰 := {𝑧 ∈ C : |𝑧| ≤ 1}, 𝜕𝒰 := {𝑧 ∈ C : |𝑧| = 1}.

Definition 2.7. We define the normalization of a complex number 𝑧 ∈ C as

Normed [𝑣] =

⎧⎨⎩{𝑣/ |𝑣|} if 𝑣 ̸= 0,
𝜕𝒰 if 𝑣 = 0.

If 𝑣 ̸= 0, we sometimes consider Normed [𝑣] ∈ C as complex number.

By the real scalar product we can define hyperplanes in the complex space.
Definition 2.8. With 𝑣 ∈ 𝜕𝒰 denoting the normal vector and 𝑑 the distance, a hy-
perplane in C is the set

𝐻(𝑣, 𝑑) = {𝑧 : ⟨𝑧, 𝑣⟩R = 𝑑} = {𝑧 : ℜ(𝑧𝑣) = 𝑑}.

The corresponding closed half spaces are given by

𝐻≤(𝑣, 𝑑) := {𝑧 : ⟨𝑧, 𝑣⟩R ≤ 𝑑} and 𝐻≥(𝑣, 𝑑) := {𝑧 : ⟨𝑧, 𝑣⟩R ≥ 𝑑}.

The normal vector 𝑣 can also be expressed by its argument, i.e, 𝑣 = exp(𝚤𝛾). Then 𝛾
is called normal vector angle and we define 𝐻(𝛾, 𝑑) = 𝐻(𝑣, 𝑑).
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2 Notation and Conventions

2.2 Wirtinger Calculus

For a function 𝑓 : C→ C the property of being complex differentiable is very strong.
By separating real and imaginary part, we can consider 𝑓 as a function 𝑓 : R2 → R2.
The requirement of being real differentiable is much weaker. However, computations
of easy to write complex functions become quite complicated when separated into real
and imaginary parts. The Wirtinger calculus greatly simplifies the real differentiation
of complex functions.

Definition 2.9 (Complex Differentiable Function). Let 𝑈 ⊂ C be an open set and
𝑓 : 𝑈 → C a function. Then 𝑓 is complex differentiable (or holomorphic) on 𝑈 if for
each 𝑧0 ∈ 𝑈 the limit exists:

𝑓 ′(𝑧0) := lim
𝑧→𝑧0

𝑓(𝑧)− 𝑓(𝑧0)
𝑧 − 𝑧0

.

Definition 2.10 (Real Differentiable Function). Let 𝑈 ⊂ C be an open set and
𝑓 : 𝑈 → C a function, 𝑓(𝑥 + 𝚤𝑦) = 𝑢(𝑥, 𝑦) + 𝚤𝑣(𝑥, 𝑦) for 𝑥, 𝑦 ∈ R. Then 𝑓 is real
differentiable on 𝑈 if the real functions 𝑢 and 𝑣 are differentiable on 𝑈 .

The following theorem shows that complex differentiability is much stronger then real
differentiability.

Theorem 2.11 (Cauchy-Riemann Differential Equations). Let 𝑋 ⊂ C be an open set
and 𝑓 : 𝑋 → C a continuous function. Then 𝑓 is complex differentiable, if and only if
it is real differentiable and the Cauchy-Riemann-Equations are satisfied:

𝜕𝑢

𝜕𝑥
= 𝜕𝑣

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥
.

In Wirtinger Calculus a function 𝑓(𝑧) = 𝑓(𝑥, 𝑦) is now written as 𝑓(𝑧, 𝑧) in terms of
𝑧 = 𝑥+ 𝚤𝑦 and 𝑧 = 𝑥− 𝚤𝑦. By considering the variables 𝑧 and 𝑧 as being independent,
one can compute the partial derivatives of 𝑓 with respect to 𝑧 or 𝑧. The observation
is that this idea can made rigorous.

Definition 2.12 (Real and Conjugate Real Derivative). Let 𝑋 ⊂ C be an open set and
𝑓 : 𝑋 → C a real differentiable function with 𝑓(𝑧) = 𝑓(𝑥, 𝑦). Then the real derivative
and the conjugate real derivative are defined by

𝜕

𝜕𝑧
:= 1

2

(︃
𝜕

𝜕𝑥
− 𝚤 𝜕

𝜕𝑦

)︃
,

𝜕

𝜕𝑧
:= 1

2

(︃
𝜕

𝜕𝑥
+ 𝚤

𝜕

𝜕𝑦

)︃
.
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2.2 Wirtinger Calculus

There are several facts about this operators.

∙ The Cauchy-Riemann-Equations for 𝑓 are equivalent to 𝜕𝑓
𝜕𝑧

= 0.

∙ There is a set of derivative identities:
𝜕𝑧

𝜕𝑧
= 𝜕𝑧

𝜕𝑧
= 1, 𝜕𝑧

𝜕𝑧
= 𝜕𝑧

𝜕𝑧
= 0,

𝜕𝑓

𝜕𝑧
=
(︃
𝜕𝑓

𝜕𝑧

)︃
,

𝜕𝑓

𝜕𝑧
=
(︃
𝜕𝑓

𝜕𝑧

)︃
,

𝜕𝑓 ∘ 𝑔
𝜕𝑧

= 𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑧
+ 𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑧
,

𝜕𝑓 ∘ 𝑔
𝜕𝑧

= 𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑧
+ 𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑧
.

Most of the theory for univariate calculus can be transferred to multivariate calculus.

Definition 2.13 (Real and Conjugate Real Derivative). Let 𝑋 ⊂ C𝑛 be an open
set and 𝑓 : 𝑋 → C𝑚 a real differentiable function with 𝑓(𝑧) = 𝑓(𝑥,𝑦). Then the
cogradient and the conjugate cogradient operators are defined by

𝜕

𝜕𝑧
:= 1

2

(︃
𝜕

𝜕𝑥
− 𝚤 𝜕

𝜕𝑦

)︃
=
(︃
𝜕

𝜕𝑧1
, . . . ,

𝜕

𝜕𝑧𝑛

)︃
,

𝜕

𝜕𝑧
:= 1

2

(︃
𝜕

𝜕𝑥
+ 𝚤

𝜕

𝜕𝑦

)︃
=
(︃
𝜕

𝜕𝑧1
, . . . ,

𝜕

𝜕𝑧𝑛

)︃
.

The 𝑚 × 𝑛-Matrix 𝜕𝑓
𝜕𝑧

(𝑧, 𝑧) is the Jacobian, 𝜕𝑓
𝜕𝑧

(𝑧, 𝑧) the conjugate Jacobian. As for
the univariate case the common differential rules are valid.

We now consider the special case of real valued functions. Then we write the gradient
∇𝑧 := 𝜕

𝜕𝑧
and conjugate gradient ∇𝑧 := 𝜕

𝜕𝑧
.

Theorem 2.14. Let 𝑋 ⊂ C𝑛 be an open set and 𝑓 : 𝑋 → R a real differentiable
function 𝑓(𝑧) = 𝑓(𝑥,𝑦). Then the following statements are equivalent:

1. 𝑓 has a stationary point in 𝑧.

2. ∇𝑧𝑓(𝑧, 𝑧) = 0.

3. ∇𝑧𝑓(𝑧, 𝑧) = 0.

Sometimes functions depend on complex and real variables. We want to embed such
functions in the current framework. It would be convenient to use the Wirtinger gra-
dient with respect to the complex variables and the standard gradient with respect to
the real variables.

So let 𝑋 ⊂ C𝑛 and 𝑈 ⊂ R𝑚 be open sets, 𝑓 : 𝑋×𝑈 → R a real differentiable function.
Then define 𝑌 := 𝑈 + 𝚤R,

𝑔 : 𝑋 × 𝑌 → R, 𝑔(𝑧,𝑢 + 𝚤𝑣) = 𝑓(𝑧,𝑢).
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2 Notation and Conventions

Then 𝑔 is real differentiable. Denote by ∇ the Wirtinger gradient and by ∇′ the real
gradient. Then with 𝑤 = (𝑧,𝑢 + 𝚤𝑣) it is

∇𝑤𝑔(𝑤) =
(︂
∇𝑧𝑔(𝑧,𝑢 + 𝚤𝑣), 1

2∇
′
𝑢𝑔(𝑧,𝑢 + 𝚤𝑣) + 1

2𝑖∇
′
𝑣𝑔(𝑧,𝑢 + 𝚤𝑣)

)︂
=
(︂
∇𝑧𝑓(𝑧,𝑢), 1

2∇
′
𝑢𝑓(𝑧,𝑢)

)︂
,

∇𝑤𝑔(𝑤) =
(︂
∇𝑧𝑓(𝑧,𝑢), 1

2∇
′
𝑢𝑓(𝑧,𝑢)

)︂
,

Remark 2.15. We can consider functions depending on complex and real variables as
functions with domain C𝑛 and when calculating the gradient we can use the standard
Wirtinger gradient and the standard real gradient. However, we have to consider the
issue to multiply the real derivatives with the factor 1

2 .

2.3 Complex Quadratic Function

2.3.1 Univariate Function

We now consider a univariate quadratic function 𝜓 that is used in the remaining part
of the thesis.

Definition 2.16. Let 𝑎 ∈ R≥0, 𝑢 ∈ C, 𝑏 ∈ R. Define

𝜓[𝑎, 𝑢, 𝑏] : C→ R, 𝜓[𝑎, 𝑢, 𝑏](𝑧) = 𝑎 |𝑧|2 + 2ℜ(𝑧𝑢) + 𝑏.

To shorten notation, we sometimes define 𝜓 := 𝜓[𝑎, 𝑢, 𝑏] and just use 𝜓(𝑧).

Remark 2.17. If 𝑎 > 0 then 𝜓[𝑎, 𝑢, 𝑏] is strictly convex and it is

𝜓[𝑎, 𝑢, 𝑏](𝑧) = 𝑎
⃒⃒⃒⃒
𝑧 + 𝑢

𝑎

⃒⃒⃒⃒2
− |𝑢|

2

𝑎
+ 𝑏.

Lemma 2.18. Let 𝜓 := 𝜓[𝑎, 𝑢, 𝑏]. Then the set of minimizers of 𝜓 on 𝜕𝒰 is equal to
−Normed [𝑢], i.e.

∙ If 𝑢 = 0, then every 𝑧 ∈ 𝜕𝒰 is a minimum.
∙ Otherwise the minimum is taken for 𝑧 = −Normed [𝑢].

For the minimum of 𝜓 on 𝒰 it holds:

∙ If 𝑎 = 0 and 𝑢 = 0, the minimum is taken for arbitrary 𝑧 ∈ 𝒰 .
∙ If 𝑎 = 0 and 𝑢 ̸= 0, the minimum is taken for 𝑧 = −Normed [𝑢].
∙ If 𝑎 > 0 and |𝑢| ≤ 𝑎, the minimum is taken for 𝑧 = −𝑢

𝑎
.

∙ If 𝑎 > 0 and |𝑢| ≥ 𝑎, the minimum is taken for 𝑧 = −Normed [𝑢].
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2.3 Complex Quadratic Function

Proof. Consider the minimization problem on 𝜕𝒰 . Then it is 𝜓(𝑧) = 2ℜ(𝑧𝑢)+𝑎+ 𝑏. If
𝑢 = 0 then 𝜓 is constant and the claim follows. Otherwise the minimum of 𝜓 is taken
for the minimum of ℜ(𝑧𝑢), which is taken for 𝑧 = −Normed [𝑢].

Consider now the minimization problem on 𝒰 . For 𝑎 = 𝑢 = 0 is 𝜓 a constant function,
so the claim follows. If 𝑎 = 0 and 𝑢 ̸= 0 again the minimum of 𝜓 is taken for the
minimum of ℜ(𝑧𝑢), which is taken for 𝑧 = −Normed [𝑢]. If 𝑎 > 0 by Remark 2.17 the
other statements follow.

Lemma 2.19. Let 𝜓 = 𝜓[𝑎, 𝑢, 𝑏]. Let 𝜓*
𝑟 be the minimal value of 𝜓 on 𝒰 and 𝜓*

𝑠 be
the minimum of 𝜓 on 𝜕𝒰 . Then

𝜓*
𝑠 = 𝑎+ 𝑏− 2 |𝑢| ,

𝜓*
𝑟 =

⎧⎨⎩𝑎+ 𝑏− 2 |𝑢| if |𝑢| ≥ 𝑎,

− |𝑢|2
𝑎

+ 𝑏 if |𝑢| < 𝑎.

Especially

∙ If |𝑢| ≥ 𝑎, then 𝜓*
𝑟 = 𝜓*

𝑠 .
∙ If |𝑢| < 𝑎, then

𝜓*
𝑠 − 𝜓*

𝑟 = 𝑎

(︃
1− |𝑢|

𝑎

)︃2

≤ 𝑎.

Proof. If |𝑢| ≥ 𝑎 the statement follows immediately from Lemma 2.18.

If |𝑢| < 𝑎 it is 𝑎 > 0. So by Lemma 2.18 the minimum of 𝜓 over 𝜕𝒰 is taken for
𝑧*

𝑠 = −Normed [𝑢] and a minimum of 𝜓 over 𝒰 is taken for 𝑧*
𝑟 = −𝑢

𝑎
. So it follows by

Remark 2.17

𝜓(𝑧*
𝑠)− 𝜓(𝑧*

𝑟 ) =
⎛⎝𝑎 ⃒⃒⃒⃒⃒− 𝑢

|𝑢|
+ 𝑢

𝑎

⃒⃒⃒⃒
⃒
2

− |𝑢|
2

𝑎
+ 𝑏

⎞⎠− (︃𝑎 ⃒⃒⃒⃒−𝑢
𝑎

+ 𝑢

𝑎

⃒⃒⃒⃒2
− |𝑢|

2

𝑎
+ 𝑏

)︃

= 𝑎

⃒⃒⃒⃒
⃒𝑢𝑎 − 𝑢

|𝑢|

⃒⃒⃒⃒
⃒
2

= 𝑎

(︃
1− |𝑢|

𝑎

)︃2

≤ 𝑎

where the last inequality holds, as 0 ≤ |𝑢|
𝑎
≤ 1.

2.3.2 Multivariate Function

We now consider a multivariate quadratic function Ψ.

Definition 2.20. Let 𝐴 ∈ C𝑛×𝑛 be a Hermitian positive semidefinite form, 𝑢 ∈ C𝑛

and 𝑏 ∈ R. Define

Ψ[𝐴,𝑢, 𝑏] : C𝑛 → R, Ψ[𝐴,𝑢, 𝑏](𝑧) = 𝑧𝐻𝐴𝑧 + 2ℜ(𝑢𝐻𝑧) + 𝑏.
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2 Notation and Conventions

Definition 2.21. Let Ψ = Ψ[𝐴, 𝑢, 𝑏]. The 𝑘-th coordinate function Ψ𝑘 is the function
Ψ in the variable 𝑧𝑘, when all other variables are fixed. With Definition 2.5 we get

Ψ𝑘(·, 𝜋𝑘(𝑧)) : C→ R, Ψ𝑘(𝜉, 𝜋𝑘(𝑧)) = Ψ(𝑧1, . . . , 𝑧𝑘−1, 𝜉, 𝑧𝑘+1, . . . , 𝑧𝑛).

We now show that the 𝑘-th coordinate function Ψ𝑘 of the multivariate function Ψ is
of the form of the univariate quadratic function 𝜓.

Lemma 2.22. Let Ψ = Ψ[𝐴, 𝑢, 𝑏]. Then

Ψ𝑘(·, 𝜋𝑘(𝑧)) = 𝜓

⎡⎣𝑎𝑘𝑘,
∑︁
𝑗 ̸=𝑘

𝑎𝑘𝑖𝑧𝑖 + 𝑢𝑘,
∑︁

𝑖,𝑗 ̸=𝑘

𝑎𝑖𝑗𝑧𝑖𝑧𝑗 + 2ℜ
⎛⎝∑︁

𝑗 ̸=𝑘

𝑧𝑗𝑢𝑗

⎞⎠+ 𝑏

⎤⎦
Proof. Calculation with 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 and 𝑢 = (𝑢1, . . . , 𝑢𝑛) yields

Ψ𝑘(·, 𝜋𝑘(𝑧))
= Ψ(𝑧1, . . . , 𝑧𝑘−1, 𝜉, 𝑧𝑘+1, . . . , 𝑧𝑛)

= 𝑎𝑘𝑘 |𝜉|2 +
∑︁
𝑖 ̸=𝑘

𝑎𝑖𝑘𝑧𝑖𝜉 +
∑︁
𝑗 ̸=𝑘

𝑎𝑘𝑗𝜉𝑧𝑗 +
∑︁

𝑖,𝑗 ̸=𝑘

𝑎𝑖𝑗𝑧𝑖𝑧𝑗 + 2ℜ
⎛⎝𝜉𝑢𝑘 +

∑︁
𝑗 ̸=𝑘

𝑧𝑗𝑢𝑗

⎞⎠+ 𝑏

= 𝑎𝑘𝑘 |𝜉|2 + 2ℜ
⎛⎝𝜉 ·∑︁

𝑗 ̸=𝑘

𝑎𝑘𝑖𝑧𝑖 + 𝑢𝑘

⎞⎠+
∑︁

𝑖,𝑗 ̸=𝑘

𝑎𝑖𝑗𝑧𝑖𝑧𝑗 + 2ℜ
⎛⎝∑︁

𝑗 ̸=𝑘

𝑧𝑗𝑢𝑗

⎞⎠+ 𝑏.

2.4 Non-Linear Optimization

We summarize some basic results for non-linear optimization which are used through-
out the thesis. For a more complete introduction containing proofs see [Bertsekas
1999], [Bazaraa; Sherali; Shetty 1993] or [Nocedal; Wright 2006]. Furthermore, we
do not need all statements in its full generality. Where appropriate, we simplify the
statements to the case required for this thesis.

In most text books these results are stated for the domain R𝑛. By Section 2.2 they
can easily be transferred to the R vector space C𝑛. So let F be either R or C. If F = R,
then F𝑛 is the standard Euclidean vector space, ⟨·, ·⟩ the standard scalar product and
∇ the standard gradient operator. If F = C, then F𝑛 denotes the R vector space C𝑛

and thus ⟨·, ·⟩ = ⟨·, ·⟩R. Furthermore, with ∇ we mean the Wirtinger gradient to either
the variable or its conjugate.

In this section let 𝑋 ⊂ F𝑛 be an open set, 𝑓 : 𝑋 → R, 𝑔𝑖 : 𝑋 → R, 𝑖 ∈ 𝐼 = {1, . . . ,𝑚}
and ℎ𝑗 : 𝑋 → R, 𝑗 ∈ 𝐽 = {1, . . . , 𝑘}. Denote 𝑔 = (𝑔1, . . . , 𝑔𝑚) and ℎ = (ℎ1, . . . , ℎ𝑘).
Let 𝑓 , 𝑔 and ℎ be continuously differentiable.
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2.4 Non-Linear Optimization

Definition 2.23 (Non-Linear Problem). A non-linear problem in standard formula-
tion is

min
𝑥∈𝑋

𝑓(𝑥)

s. t. 𝑔(𝑥) ≤ 0
ℎ(𝑥) = 0.

(𝑃 )

We call the problem convex, if 𝑋, 𝑓 and 𝑔 are convex and ℎ is affine.

Definition 2.24. For the problem (𝑃 ) the Lagrange function is

𝐿 : F𝑛 × R𝑚 × R𝑘 → R, (𝑥,𝜇,𝜂) ↦→ 𝑓(𝑥) + 𝜇𝑇𝑔(𝑥) + 𝜂𝑇ℎ(𝑥).

In the following we state some optimality conditions for non-linear programs. However,
they contain some regularity assumptions to problem or the optimal point. A point
satisfying these assumptions is called regular.

There are various constraint qualifications that assure regularity. We now state some
of these. Let 𝑥* ∈ 𝑋 be a feasible point. Denote by 𝐼(𝑥*) = {𝑖 ∈ 𝐼 : 𝑔𝑖(𝑥*) = 0} the
set of active inequality constraints.

Slater’s Constraint Qualification Let 𝑔 be convex at 𝑥*. Let there be a point 𝑥 such
that 𝑔𝑖(𝑥) < 0 for all 𝑖 ∈ 𝐼. Let ∇ℎ𝑗(𝑥*), 𝑗 ∈ 𝐽 be linear independent. Then 𝑥*

is regular.

Linear Independent Constraint Qualification (LICQ) If the equality constraint gra-
dients ∇ℎ𝑗(𝑥*), 𝑗 ∈ 𝐽 and the active inequality constraint gradients ∇𝑔𝑖(𝑥*),
𝑖 ∈ 𝐼(𝑥*) are linearly independent, then 𝑥* is regular.

Mangasarian-Fromovitz Constraint Qualification (MFCQ) Let ∇ℎ𝑗(𝑥*), 𝑗 ∈ 𝐽 be
linearly independent. Let there be a 𝑑 ∈ R𝑛 such that ⟨𝑑,∇𝑔𝑖(𝑥*)⟩ < 0, 𝑖 ∈ 𝐼(𝑥*)
and ⟨𝑑,∇ℎ𝑗(𝑥*)⟩ = 0 for 𝑗 ∈ 𝐽 . Then 𝑥* is regular.

Remark 2.25. Equivalent to MFCQ is the condition: For 𝜂𝑗 ∈ R, 𝑗 ∈ 𝐽 and 𝜇𝑖 ∈ R≥0,
𝑖 ∈ 𝐼(𝑥*) it is

𝑘∑︁
𝑖∈𝐼(𝑥*)

𝜇𝑖∇𝑔𝑖(𝑥*) +
𝑘∑︁

𝑗∈𝐽

𝜂𝑗∇ℎ𝑗(𝑥*) = 0 =⇒ 𝜂𝑗 = 0, 𝑗 ∈ 𝐽 ∧ 𝜇𝑖 = 0, 𝑖 ∈ 𝐼(𝑥*)

Theorem 2.26 (Karush-Kuhn-Tucker Necessary Conditions). Let 𝑥* ∈ 𝑋 be feasible
to (𝑃 ) and regular. Let 𝑓 and 𝑔 and ℎ be continuously differentiable at 𝑥*. If 𝑥* solves
the problem locally, there are vectors 𝜇* ∈ R𝑚 and 𝜂* ∈ R𝑘 such that

∇𝑥𝐿(𝑥*,𝜇*,𝜂*) = 0,
𝜇*

𝑖 · 𝑔𝑖(𝑥*) = 0, 𝑖 ∈ 𝐼,
𝜇* ≥ 0.

If Slater’s condition or LICQ holds, then 𝜇* and 𝜂* are unique.
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Theorem 2.27 (Karush-Kuhn-Tucker Sufficient Conditions). Let (𝑃 ) be convex and
𝑥* ∈ 𝑋 a regular feasible solution and assume that the KKT conditions hold. Then 𝑥*

is a global optimum to (𝑃 ). If the convexity assumptions hold only in a neighborhood
of 𝑥*, then 𝑥* is a local optimum to (𝑃 ).

Definition 2.28 (Lagrangian Dual Problem). For (𝑃 ) the dual function 𝜃 : R𝑚 ×
R𝑘 → R is defined by

𝜃(𝜇,𝜂) = inf{𝐿(𝑥,𝜇,𝜂) : 𝑥 ∈ 𝑋}.

Then the dual problem is

max 𝜃(𝜇,𝜂)
s. t. 𝜇 ≥ 0.

(D)

The dual problem gives a lower bound for the primal problem. However, in the non-
convex case this bound might not be tight.

Theorem 2.29 (Weak Duality Theorem). Let 𝑥 be feasible to (𝑃 ) and (𝜇,𝜂) be
feasible to (D), i.e. 𝜇 ≥ 0. Then 𝑓(𝑥) ≥ 𝜃(𝜇,𝜂).

Theorem 2.30 (Strong Duality Theorem). Let the problem (𝑃 ) be convex and have
a finite optimal solution. Let the Slater’s condition hold. Then there is no duality gap,
i.e. there is 𝑥* feasible to (𝑃 ) and (𝜇*,𝜂*) be feasible to (D) such that

𝑓(𝑥*) = 𝜃(𝜇*,𝜂*).

Definition 2.31 (Saddle Point). A solution (𝑥*,𝜇*,𝜂*) with 𝑥* ∈ 𝑋 and 𝜇* ≥ 0
is called a saddle point of the Lagrangian function, if for all 𝑥 ∈ 𝑋 and (𝜇,𝜂) with
𝜇 ≥ 0

𝐿(𝑥*,𝜇,𝜂) ≤ 𝐿(𝑥*,𝜇*,𝜂*) ≤ 𝐿(𝑥,𝜇*,𝜂*).

Theorem 2.32 (Saddle Point Theorem). Let 𝑥* ∈ 𝑋 and (𝜇*,𝜂*) with 𝜇* ≥ 0.

Then (𝑥*,𝜇*,𝜂*) is a saddle point of the Lagrangian if and only if 𝑥* is optimal for
(𝑃 ) and (𝜇*,𝜂*) is optimal for (D) and there is no duality gap, i.e. 𝑓(𝑥*) = 𝜃(𝜇*,𝜂*).

If (D) is convex, then (𝑥*,𝜇*,𝜂*) is a saddle point of the Lagrangian if and only if
(𝑥*,𝜇*,𝜂*) satisfies the KKT-conditions in Theorem 2.26.

2.5 Exterior Penalty Function

In this section we survey results for the quadratic penalty function approach to equal-
ity constrained optimization problems. For a detailed analysis and extensions see
[Bazaraa; Sherali; Shetty 1993] or [Nocedal; Wright 2006].
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2.6 Block Coordinate Descent Method

Consider the minimization problem

min 𝑓(𝑥)
s. t. ℎ(𝑥) = 0

𝑥 ∈ 𝑋.
(𝑃 )

The idea of the penalty approach is, to add the violation of the constraint to the
objective. Then a sequence of problems for increasing penalty weight 𝜇 is solved:

min 𝑔𝜇(𝑥) := 𝑓(𝑥) + 𝜇 ||ℎ(𝑥)||2

s. t. 𝑥 ∈ 𝑋.
(𝑄𝜇)

One expects that for increasing 𝜇 → ∞ the solution of (𝑄𝜇) should converge to an
optimal and hence feasible solution of 𝑃 . And such results exists indeed.

Theorem 2.33. Assume a sequence 𝜇𝑘 → ∞ for 𝑘 → ∞ and assume that there is a
global minimizer 𝑥𝑘 of (𝑄𝜇𝑘

). Then every limit point 𝑥* of the sequence 𝑥𝑘 is a global
minimizer of (P). In particular, if 𝑥𝑘 is contained in a compact set, such a limit point
exists and ℎ(𝑥𝑘)→ 0 for 𝑘 →∞.

Despite yielding a strong theoretical result, Theorem 2.33 is of little practical value.
Usually, it is not possible to determine an exact global minimizer 𝑥𝑘 of (𝑄𝜇𝑘

). A more
practical result is given in Theorem 2.34.

Theorem 2.34. Assume 𝑋 = R𝑛 and 𝜇𝑘 →∞ for 𝑘 →∞ and assume that 𝑥𝑘 ∈ 𝑋
satisfies ∇𝑔𝜇𝑘

(𝑥𝑘) ≤ 𝜏𝑘 with 𝜏𝑘 → 0 for 𝑘 → ∞. Denote by 𝑥* a limit point of the
sequence 𝑥𝑘.

∙ If 𝑥* is infeasible to (𝑃 ) then it is a stationary point of ||ℎ(𝑥)||2.

∙ If 𝑥* is feasible to (𝑃 ) and the equality constraint gradients are linearly inde-
pendent at 𝑥*, then 𝑥* is a KKT point for (𝑃 ). In this case for any subsequence
𝑥𝑘𝑗

converging to 𝑥* the Lagrange multiplier 𝜆*
𝑖 for ℎ𝑖 at 𝑥* in 𝑃 is

𝜆*
𝑖 = lim

𝑗→∞
−𝜇𝑘𝑗

ℎ𝑖(𝑥𝑘𝑗
).

2.6 Block Coordinate Descent Method

The block coordinate descent method, also known as non-linear Gauss-Seidel method
or alternating optimization, is a simple but practically efficient optimization method.
A short description relying on strong assumptions is in [Bertsekas 1999, Section 2.7],
for a more general and rather complete survey see [Bezdek; Hathaway 2003].
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2 Notation and Conventions

Let 𝐷 := R𝑚1 × · · · × R𝑚𝑛 and 𝑓 : 𝐷 → R continuously differentiable. Let 𝑋 =
𝑋1 × · · · ×𝑋𝑘 with 𝑋𝑘 ⊂ R𝑚𝑘 . Consider the problem

min
𝑥∈𝑋

𝑓(𝑥). (2.1)

Denote 𝑦𝑘 = 𝜋𝑘(𝑥) = (𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛). Assume that for all 𝑘 and fixed 𝑦𝑘

we can solve the problem

min
𝜉∈𝑋𝑘

𝑓𝑘(𝜉,𝑦𝑘) = 𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝜉, 𝑥𝑘+1, . . . , 𝑥𝑛). (2.2)

The block coordinate descent method now starts with an initial 𝑥0 and iteratively
computes 𝑥𝑡+1 = (𝑥𝑡+1

1 , . . . , 𝑥𝑡+1
𝑛 ) from the current iteration 𝑥𝑡 = (𝑥𝑡

1, . . . , 𝑥
𝑡
𝑛) by

𝑦𝑡
𝑘 = (𝑥𝑡+1

1 , . . . , 𝑥𝑡+1
𝑘−1, 𝑥

𝑡
𝑘+1, . . . , 𝑥

𝑡
𝑛),

𝑥𝑡+1
𝑘 ∈ argmin

𝜉∈𝑋𝑘

𝑓𝑘(𝜉,𝑦𝑡
𝑘), 𝑘 = 1, . . . , 𝑛.

Theorem 2.35 ([Bertsekas 1999, Theorem 2.7.1]). Assume all 𝑋𝑘 to be closed and
convex. If in each step the minimum is uniquely attained, then every limit point of
a sequence generated by the block coordinate descent method is a stationary point of
(2.1).

Note that the assumptions in Theorem 2.35 can be relaxed, but always some kind
of convexity assumptions have to be made for theoretical convergence statements.
However, in practice even if these conditions are not satisfied, the block coordinate
descent method works well.

Remark 2.36. In any case the sequence 𝑓(𝑥𝑡) is decreasing. So if 𝑓 is bounded below,
𝑓(𝑥𝑡) converges from above to some 𝑓0. In practice usually the algorithm is stopped
when the decrease becomes to small, e.g. when 𝑓(𝑥𝑡) − 𝑓(𝑥𝑡+1) ≤ 𝜀 for some fixed
𝜀 > 0. The the algorithm is assured to terminate after a finite number of steps, as
𝑓(𝑥𝑡)→ 𝑓0 implies 𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1)→ 0.

2.6.1 Dual Variables in Block Coordinate Descend Method

The Block coordinate descent method is a feasible method, i.e, it approaches the opti-
mal solution from above. However, in this thesis we apply the method in cases where
we need a lower bound for the optimum. We did not find any result in literature about
the estimation of the optimality gap in block coordinate descent method. However,
in our case the problem satisfies very strong assumptions. We now prove convergence
results of the dual variables of the block coordinate descent method for these strong
assumptions.
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2.6 Block Coordinate Descent Method

Assumption 2.37. We now make the following assumptions.

∙ The function 𝑓 is strictly convex.

∙ The set 𝑋 and thus 𝑋𝑘 are compact and convex.

∙ There are continuously differentiable convex functions 𝑔𝑖
𝑘 : R𝑚𝑘 → R, 𝑘 =

1, . . . , 𝑛, 𝑖 = 1, . . . , 𝑐𝑘 such that with 𝑔𝑘 = (𝑔1
𝑘, . . . , 𝑔

𝑐𝑘
𝑘 ) it is

𝑋𝑘 = {𝜉 ∈ R𝑚𝑘 : 𝑔𝑘(𝜉) ≤ 0}.

∙ Slater’s Condition is satisfied, i.e. there is an 𝑥 such that 𝑔𝑘(𝑥) < 0 for all 𝑘.

Corollary 2.38. Under Assumption 2.37 the block coordinate descent method con-
verges to the unique global optimum of 𝑓 on 𝑋.

Proof. Each 𝑋𝑘 and so 𝑋 is convex. Furthermore, 𝑓 is strictly convex, so each sub-
problem (2.2) is strictly convex. In each step the minimum is uniquely attained. By
Theorem 2.35 every limit point of the sequence 𝑥𝑡 is a stationary point. As (𝑃 ) is
strictly convex on a compact domain, there is a unique global optimum 𝑥̃ which is the
only stationary point. So every limit point of 𝑥𝑡 is 𝑥̃, i.e. 𝑥𝑡 converges to 𝑥̃.

We now consider the Lagrange multipliers. With Assumption 2.37 the problem (2.1)
can be stated as

min 𝑓(𝑥1, . . . , 𝑥𝑚)
s. t. 𝑔𝑘(𝑥𝑘) ≤ 0, 𝑘 = 1, . . . ,𝑚.

(𝑃 )

Then (𝑃 ) has a unique global optimum 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) with unique Lagrange multi-
plier 𝜇̃ = (𝜇̃1, . . . , 𝜇̃𝑛). The problem (2.2) becomes

min 𝑓𝑘(𝜉,𝑦𝑘) = 𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝜉, 𝑥𝑘+1, . . . , 𝑥𝑛)
s. t. 𝑔𝑘(𝜉) ≤ 0, 𝑘 = 1, . . . ,𝑚.

(𝑃𝑘(𝑦𝑘))

As the problem is also strictly convex the solution and its Lagrange multipliers are
unique. They depend on the vector 𝑦𝑘. Denote them 𝑥*

𝑘(𝑦𝑘) and 𝜇*
𝑘(𝑦𝑘).

We already know that the primal solutions of (𝑃𝑘(𝑦𝑘)) converge to the primal solution
of (𝑃 ). We now show that the same holds for the Lagrange multipliers. Therefore, we
first need the following theorem.

Theorem 2.39 ([Semple; Zlobec 1986, Corollary 3.3]). Consider the convex mathe-
matical programming model 𝑃 (𝑦)

min 𝑓(𝑥,𝑦)
s. t. 𝑔(𝑥,𝑦) ≤ 0
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where 𝑦 ∈ 𝑌 ⊂ R𝑝 is a data vector, 𝑥 ∈ 𝑋 ⊂ R𝑛 is the variable, 𝑓 : 𝑋 × 𝑌 → R is
continuous and 𝑓(·,𝑦) and 𝑔(·,𝑦) are convex for every 𝑦.

Assume that the set of optimal solutions of 𝑃 (𝑦*) is bounded and not empty. Assume
that Slater’s condition holds for 𝑃 (𝑦*). Furthermore, assume that for all 𝑦 in some
neighborhood of 𝑦* there exists unique Lagrangian multiplier 𝜇(𝑦) for 𝑃 (𝑦). Then
𝜇(𝑦) is continuous in 𝑦*.

Theorem 2.40. Under Assumption 2.37 in the block coordinate descent method the
Lagrange multiplier of the subproblems (𝑃𝑘(𝑦𝑘)) converge to the Lagrange multiplier
of the global optimum of (𝑃 ), i.e.

lim
𝑡→∞

𝜇*
𝑘(𝑦𝑡

𝑘) = 𝜇̃𝑘.

Proof. By Corollary 2.38 it is 𝑥𝑡 → 𝑥̃, so 𝑦𝑡
𝑘 → (𝑥̃1, . . . , 𝑥̃𝑘−1, 𝑥̃𝑘+1, 𝑥̃𝑛) =: 𝑦̃𝑘. Slater’s

condition is satisfied, further by strict convexity for each 𝑦𝑘 there is a unique solution
of (𝑃𝑘(𝑦𝑘)). So we can apply Theorem 2.39 and conclude that

lim
𝑡→∞

𝜇*
𝑘(𝑦𝑡

𝑘) = 𝜇*
𝑘(𝑦̃𝑘).

Set 𝜇*
𝑘 := 𝜇*

𝑘(𝑦*
𝑘) and 𝜇* = (𝜇*

1, . . . , 𝜇
*
𝑛). Then by definition for each 𝑘

∇𝑓𝑘(𝑥̃𝑘, 𝑦̃𝑘) + (𝜇*
𝑘)𝑇∇𝑔𝑘(𝑥̃𝑘) = 0

and complementary slackness (𝜇𝑖
𝑘)*𝑔𝑖

𝑘(𝑥̃𝑘) = 0 holds.

We now show that 𝜇* are the unique Lagrange multiplier satisfying the KKT condi-
tions for the global problem (𝑃 ), and so 𝜇* = 𝜇̃. We denote the natural extension
of 𝑔𝑘 to the domain 𝐷 by ignoring all but the 𝑘-th element vector by 𝑔𝑘 again. Then
complementary slackness 𝜇*

𝑖 𝑔
𝑖
𝑘(𝑥̃) holds and

∇𝑓(𝑥̃) + (𝜇*)𝑇∇𝑔(𝑥̃)
=
(︁
∇𝑥𝑘

𝑓(𝑥̃) + (𝜇*)𝑇∇𝑥𝑘
𝑔(𝑥̃)

)︁
𝑘=1,...,𝑛

=
(︁
∇𝑓𝑘(𝑥̃𝑘, 𝑦̃𝑘) + (𝜇*

𝑘)𝑇∇𝑔𝑘(𝑥̃𝑘)
)︁

𝑘=1,...,𝑛

=(0, . . . , 0).

So 𝜇* are the unique Lagrange multiplier to (𝑃 ), i.e. 𝜇* = 𝜇̃.

2.7 Wire Length

In most parts of this thesis we try to find a placement with a short connection length.
While the shape of the objects and the decision variables can vary, the wire length
models remain the same. There are several abstractions of the wire length described
in Section 1.3, in this thesis we use the clique model unless another model is explicitly
stated.
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2.7 Wire Length

Definition 2.41 (Clique Net Length). Let 𝑞 = (𝑞1, . . . , 𝑞𝑚) ∈ C𝑚 be the pin positions
of a net. The clique net length is

nl(𝑞) = 1
2

𝑚∑︁
𝑘,𝑙=1
|𝑞𝑘 − 𝑞𝑙|2 .

Lemma 2.42. The clique net length is a positive semidefinite Hermitian form. More
precise with 𝐼𝑚 denoting the 𝑚×𝑚 identity matrix and 1𝑚 the 𝑚×𝑚 matrix of ones
it is

nl(𝑞) = 𝑞𝐻(𝑚𝐼𝑚 − 1𝑚)𝑞.

Proof. The stated identity holds, as

nl(𝑞) = 1
2

𝑚∑︁
𝑘,𝑙=1
|𝑞𝑘 − 𝑞𝑙|2

= 1
2

𝑚∑︁
𝑘,𝑙=1

(︁
|𝑞𝑘|2 − 𝑞𝑘𝑞𝑙 − 𝑞𝑙𝑞𝑘 + |𝑞𝑙|2

)︁

=
𝑚∑︁

𝑘=1
𝑚 |𝑞𝑘|2 −

𝑚∑︁
𝑘,𝑙=1

𝑞𝑘𝑞𝑙

= 𝑞𝐻(𝑚𝐼𝑚 − 1𝑚)𝑞.

Furthermore, the net length is obviously non-negative, so it is positive semidefinite.

However, in general not all pins are connected with each other but they are in different
nets. Then the wire length is the sum of the net length of the different nets. These
nets can also be weighted by its importance. The nets are indexed by 𝑘 = 1, . . . , 𝑜.

Definition 2.43 (Total Wire Length). Let 𝑞 ∈ C𝑚 be the vector of all pin positions.
Let 𝜇𝑘 the weight of net 𝑘 and 𝑁𝑘 its pin selection matrix, i.e. 𝑁𝑘𝑞 are the pin positions
of net 𝑘. The total wire length is

wl(𝑞) =
∑︁
𝑘∈𝒩

𝜇𝑘 · nl(𝑁𝑘𝑞) = 𝑞𝐻

(︃
𝑜∑︁

𝑘=1
𝜇𝑘𝑁

𝑇
𝑘 (𝑚𝑘𝐼𝑚𝑘

− 1𝑚𝑘
)𝑁𝑘

)︃
𝑞 =: 𝑞𝐻𝑄𝑞.

As each net length and all weights are non-negative, the wire length is non-negative
and thus a positive semidefinite form of the pin positions.

Lemma 2.44 (Wire Length Scales Linearly with the Net Weights). Let 𝛼 ≥ 0. In
the settings of Definition 2.43 denote by wl𝛼 the total wire length if all net weights are
scaled by 𝛼, i.e. the net weight of net 𝑘 is are 𝛼𝜇𝑘. Then

wl𝛼(𝑞) = 𝑞𝐻(𝛼𝑄)𝑞 = 𝛼 · 𝑞𝐻𝑄𝑞 = 𝛼 · wl(𝑞).
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2 Notation and Conventions

Proof. Simple computation yields

wl𝛼(𝑞) = 𝑞𝐻

(︃
𝛼

𝑜∑︁
𝑘=1

𝜇𝑘𝑁
𝑇
𝑘 (𝑚𝑘𝐼𝑚𝑘

− 1𝑚𝑘
)𝑁𝑘

)︃
𝑞

= 𝑞𝐻(𝛼𝑄)𝑞 = 𝛼 · 𝑞𝐻𝑄𝑞 = 𝛼 · wl(𝑞).

The following statement is a generalization of the computation done in Lemma 2.42
and is used later in this thesis.

Lemma 2.45. Let 𝑤𝑘𝑙 ≥ 0 be the weight of the connection between 𝑞𝑘 and 𝑞𝑙. Then
∑︁
𝑘<𝑙

𝑤𝑘𝑙 |𝑞𝑘 − 𝑞𝑙| =
1
2

𝑚∑︁
𝑘,𝑙=1

𝑤𝑘𝑙 |𝑞𝑘 − 𝑞𝑙|2 = 𝑞𝐻𝑄𝑞

where 𝑤𝑘𝑘 is arbitrary and 𝑄 = (𝑞𝑘𝑙) is given by

𝑞𝑘𝑘 =
∑︁
𝑙 ̸=𝑘

𝑤𝑘𝑙,

𝑞𝑘𝑙 = −𝑤𝑘𝑙 for 𝑘 ̸= 𝑙.

Proof. Computations yield
∑︁

1≤𝑘<𝑙≤𝑚

𝑤𝑘𝑙 |𝑞𝑘 − 𝑞𝑙|2 = 1
2

𝑚∑︁
𝑘,𝑙=1

𝑤𝑘𝑙 |𝑞𝑘 − 𝑞𝑙|2

= 1
2

𝑚∑︁
𝑘,𝑙=1

𝑤𝑘𝑙

(︁
|𝑞𝑘|2 − 𝑞𝑘𝑞𝑙 − 𝑞𝑙𝑞𝑘 + |𝑞𝑙|2

)︁

=
𝑚∑︁

𝑘=1

(︃
𝑚∑︁

𝑙=1
𝑤𝑘𝑙

)︃
|𝑞𝑘|2 −

𝑚∑︁
𝑘,𝑙=1

𝑤𝑘𝑙𝑞𝑘𝑞𝑙

= 𝑞𝐻𝑄𝑞.

2.8 Problem Instances

Our numerical evaluation was done based on 5 real world problem instances. These
are Egrain (E), Versiplektor (V), Mekas (M), SapKit (S) and Dill (D). As all circuits
except Dill have less than 100 components and Dill has 1308 components, we generated
additional circuit instances by partitioning of Dill. In fact, this is realistic as for System-
in-Packages the components are partitioned onto the different modules and thus on
each module side there is always a subset of the components. These instances are
summarized in Table 2.1 on page 28.
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2.9 Computational Environment

2.9 Computational Environment

Computations were performed on the Hercules Cluster of the Fraunhofer Institute for
Industrial Mathematics, Kaiserslautern. The tests ran on a dedicated dual Intel Xeon
LV 5148 Woodcrest node with 2.33 GHz, 4 cores and 8GB RAM per node. On the
machines ran Suse Linux Enterprise Edition 11, the compiler was GCC 4.1.2.

As non-linear solver we used Ipopt 3.9.2. This is a primal-dual interior point algorithm,
see [Wächter; Biegler 2006]. It was compiled with the sparse linear solver MA27 and
the Intel Math Kernel Library 10.2.2. without parallelization.

The decision to use Ipopt was done for the following reason. We compared SQP,
active set and interior point methods in Matlab 2010a for the circles facility layout
problem of Chapter 7. For smaller instances all solvers were fast but SQP performed
best. However, for larger instances where running time becomes more important, the
interior point method was significantly superior to the other solvers. As the facility
layout problem has similar structure to the placement problems in this thesis, we
decided to use an interior point method. Ipopt is a widely used free interior point
solver with an easy-to-use C++ interface.

Our implemented algorithms are not parallelized and thus single threaded. Never-
theless to avoid memory and cache conflicts, each process ran on a dedicated note.
Especially computation times are meaningful, as the computation process was not
influenced by other processes.
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2 Notation and Conventions

Circuit Nr. Components Nr. Nets Nr. Pins
D0019 19 385 792
D0034 34 412 849
D0059 59 443 938
D0078 78 465 1006
D0104 104 487 1070
D0138 138 515 1151
D0183 183 541 1241
D0243 243 582 1363
D0323 323 657 1565
D0380 380 709 1699
D0448 448 773 1872
D0529 529 805 1995
D0625 625 854 2164
D0736 736 910 2351
D0868 868 990 2590
D0943 943 1039 2729
D1027 1027 1093 2885
D1116 1116 1151 3047
D1217 1217 1217 3252
D1308 1308 1275 3410
E0031 31 29 75
S0041 41 112 274
M0057 57 38 117
V0093 93 144 414

Table 2.1: Real world circuits used for numerical evaluations.
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3 Circle Rotation Problem

Figure 3.1: The circle rotation problem is to rotate fixed centered, connected circles
such that the wire length is minimized.

In this chapter we investigate the circle rotation problem. In this problem a set of fixed
centered, connected circles is given. The connection points of the circles are not in the
circle center. Therefore, the rotation of the circles influences the connection length.
The circle rotation problem is to find rotations of the circles such that the connection
length is minimized.

This problem has to be solved in a local search strategy of our algorithm for the circle
placement problem studied in Chapter 7 and the rounded rectangle algorithm stated
in Chapter 8. In these algorithms, numerous circle rotation problems are solved to
local optimality. Therefore, it is important to solve the circle rotation problem fast
and to achieve a good solution quality.

We show that it is equivalent to the NP-hard Hermitian minimization problem. For this
problem exist semidefinite programming techniques in the literature that guarantee
an approximation ratio. However, to our best knowledge, the quality of fast, local
optimization algorithms for this problem has not been studied in the literature.
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3 Circle Rotation Problem

We state and compare different models and algorithms for the circle rotation problem.
In particular, we show that local optimization algorithms yield good results in short
running times.

In Section 3.1 we define the circle rotation problem and formulate it as Hermitian
minimization problem. Based on this formulation, we show in Section 3.3 that it is
NP-hard. In Section 3.2 we give a survey of the literature results for the Hermitian
minimization problem.

In the remaining part of the chapter we develop different algorithms to solve the
circle rotation problem. In Section 3.4 we present local solution algorithms to the
circle rotation problem and prove absolute approximation results. In Section 3.5 we
consider the problem in the star net model. In Section 3.6 we make a detailed numerical
comparison of the algorithms and show that local optimization algorithms for the circle
placement problem yield high quality solutions in short running times.

3.1 Problem Statement

We now formalize the circle rotation problem. Given is:

∙ A set 𝒞 of 𝑛 circles with fixed center positions 𝑐𝑗 ∈ C. The vector of the circle
centers is 𝑐 = (𝑐1, . . . , 𝑐𝑛)𝑇 .

∙ A set 𝒫 of 𝑚 pins. Pin 𝑙 is connected to circle 𝑗(𝑙) and has offset 𝑝𝑙 ∈ C from
its center. The vector of pin offsets is 𝑝 = (𝑝1, . . . , 𝑝𝑚)𝑇 .

∙ A set 𝒩 of 𝑜 nets. Net 𝑘 connects the pins 𝒫𝑘 and has weight 𝜇𝑘.

We want to rotate the circles such that the wire length is minimized. As a relaxation of
this strict model we also consider the relaxed model, where the circles are also allowed
to be shrinked (but not stretched).

We encode the rotation of circle 𝑗 by a complex number 𝑧𝑗. So the vector of decision
variables is 𝑧 = (𝑧1, . . . , 𝑧𝑛)𝑇 ∈ C𝑛. Recall that by Definition 2.6

𝒰𝑛 := {𝑧 ∈ C : |𝑧| ≤ 1}𝑛, 𝜕𝒰𝑛 := {𝑧 ∈ C : |𝑧| = 1}𝑛.

As in the strict model the circles can only be rotated but not stretched or shrinked, we
have the constraint 𝑧 ∈ 𝜕𝒰𝑛. In contrast to this in the relaxed model the constraint
is 𝑧 ∈ 𝒰𝑛.

For given rotations 𝑧 the absolute pin positions can be computed. Then pin 𝑙 with
offset 𝑝𝑙 from the center 𝑐𝑗 of circle 𝑗 has the position 𝑐𝑗 + 𝑧𝑗𝑝𝑙. Define the circle-
to-pin matrix Φ = (𝜑𝑙𝑗) ∈ {0, 1}𝑚×𝑛 with 𝜑𝑙𝑗 = 1 if and only if pin 𝑙 is on circle 𝑗.
Furthermore, set 𝑃 = diag(𝑝). Then the vector 𝑞 of absolute pin positions is

𝑞 := Φ𝑐 + 𝑃Φ𝑧. (3.1)
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3.2 Literature Survey

The wire length is defined as in Definition 2.43 as the weighted sum of connections of
the distance of pins in a net. It can be expressed as wl(𝑧) = 𝑞𝐻𝑄𝑞 with a positive
semidefinite Hermitian matrix 𝑄. So we get the following statement.

Lemma 3.1. The total wire length in the circle rotation problem is a positive semidef-
inite Hermitian form of the circle rotations 𝑧, i.e.

wl(𝑧) = 𝑏+ 𝑢𝐻𝑧 + 𝑧𝐻𝑢 + 𝑧𝐻𝐴𝑧.

Proof. The total wire length in the circle rotation problem is wl(𝑧) = 𝑞𝐻𝑄𝑞. With
the pin positions being 𝑞 = Φ𝑐 + 𝑃Φ𝑧 it follows

wl(𝑧) = 𝑞𝐻𝑄𝑞 = (Φ𝑐 + 𝑃Φ𝑧)𝐻𝑄(Φ𝑐 + 𝑃Φ𝑧)
= 𝑏+ 𝑢𝐻𝑧 + 𝑧𝐻𝑢 + 𝑧𝐻𝐴𝑧

with 𝑏 := 𝑐𝐻Φ𝑇𝑄Φ𝑐, 𝑢 := Φ𝑇𝑃𝐻𝑄Φ𝑐 and 𝐴 := Φ𝑇𝑃𝐻𝑄𝑃Φ.

Definition 3.2. The circle rotation problem CR is min𝑧∈𝜕𝒰𝑛 wl(𝑧) or, formulated in
standard NLP form

min 𝑏+ 𝑢𝐻𝑧 + 𝑧𝐻𝑢 + 𝑧𝐻𝐴𝑧

s. t. |𝑧𝑗|2 = 1, 𝑗 = 1, . . . , 𝑛.
(3.2)

In Lemma 3.1 we showed that the wire length is positive semidefinite and therefore
convex. However, the feasible set 𝜕𝒰𝑛 of the strict model is not convex. Recall that
in the relaxed model we allowed the circles to be shrinked, so the feasible set is the
convex set 𝒰𝑛. In particular, the rotation problem in the relaxed model is a convex
problem and can be solved to optimality by standard NLP solvers.

In the following we state the Hermitian minimization problem HM. This problem has
been analyzed in literature and is closely related to the strict circle rotation problem.
In Section 3.3 we show that the strict circle rotation problem is essentially equivalent
to the Hermitian minimization problem.

Definition 3.3 (Hermitian Minimization Problem (HM)). For a Hermitian positive
semidefinite matrix 𝐻 find min𝑧∈𝜕𝒰𝑛 𝑧𝐻𝐻𝑧.

3.2 Literature Survey

Problem HM of Definition 3.3 has been analyzed in the literature for general Her-
mitian matrices 𝐻 under different assumptions. Beside the minimization problem
min𝑧∈𝜕𝒰 𝑧𝐻𝐻𝑧, also the maximization problem max𝑧∈𝜕𝒰 𝑧𝐻𝐻𝑧 has been considered.
This problem is the natural extension of the maximum cut problem to complex num-
bers. As the approximation results to both the max cut problem and its extension
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3 Circle Rotation Problem

are achieved by semidefinite programming (SDP), we briefly sketch SDP here. For a
detailed, self contained introduction see e.g. [Todd 2001], [Vandenberghe; Boyd 1996]
or [Alizadeh 1995]

An SDP can be seen as a linear program where the variables are ordered in square ma-
trix form. Additionally to linear programs, this matrix has to be positive semidefinite.
Denote variables by 𝑋 ∈ R𝑛×𝑛 and assume 𝐶,𝐴𝑖 ∈ R𝑛×𝑛 and 𝑏𝑖 ∈ R. So with 𝐶 ∙𝑋
denoting the component wise multiplication and stated as a maximization problem an
SDP is

max 𝐶 ∙𝑋
s. t. 𝐴𝑖 ∙𝑋 = 𝑏𝑖, 𝑖 = 1, . . . , 𝑛

𝑋 ⪰ 0.

There are algorithms (e.g. interior point methods or augmented Lagrangian methods)
that solve an SDP up to predefined precision in polynomial time.

Definition 3.4 (Max Cut Problem). Let 𝐺 be a graph with positive edge weights. A
cut in 𝐺 is a partition of the vertices into disjoint subsets. The cut-set is the edges with
end points in different partitions. The cut weight is the sum of weights of the edges in
the cut set.

The maximum cut problem is to find a cut with maximal cut weight.

The max cut problem is known to be NP hard, see [Garey; Johnson 1979]. It is even
known to be NP-hard to approximate the max cut value to better than 16/17 = 0.941,
see [Håstad 2001]. In [Goemans; Williamson 1995] a polynomial algorithm to approx-
imate max cut by 0.8786 is presented. The approximation is done by semidefinite
programming and randomized rounding. They formulate max cut as a quadratic inte-
ger program to maximize ∑︀𝑖<𝑗 𝑤𝑖𝑗(1− 𝑦𝑖𝑦𝑗) with 𝑦𝑖 ∈ {−1, 1}, where 𝑤𝑖𝑗 denotes the
edge weights between vertex 𝑖 and 𝑗.

Note that the constraints 𝑦𝑖 ∈ {−1, 1} enforce real variables to lay on the boundary
of the unit circle. So a natural extension to complex numbers is 𝑦𝑖 ∈ 𝜕𝒰 . Similar
semidefinite programming approaches as those in [Goemans; Williamson 1995] are
applied to the complex problem HM.

The main idea of this approach is as follows: Write 𝑧𝐻𝐻𝑧 = 𝐻 ∙ 𝑧𝑧𝐻 = 𝐻 ∙𝑍 where
𝑍 = 𝑧𝑧𝐻 is a rank 1 matrix. Then the Hermitian minimization problem is equivalent
to finding min{𝐻 ∙ 𝑍 : 𝑍 has rank 1}. Now by relaxing the rank 1 constraint to
the constraint that 𝑍 is positive semidefinite with diagonal entries 1, the relaxed
semidefinite program is obtained:

max 𝐻 ∙ 𝑍
s. t. 𝑍𝑖𝑖 = 1, 𝑖 = 1, . . . , 𝑛

𝑍 ⪰ 0.
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3.3 NP-Hardness

The solution to this program gives an upper bound for the original problem. The
subtle part is, to recover a good solution vector 𝑧 for the original problem from the
relaxed SDP solution 𝑍.

In [Zhang; Huang 2006] a polynomial time 𝜋
4 approximation algorithm for the max-

imization problem with positive semidefinite matrices is proved by the above SDP
relaxation ideas.

In [So; Zhang; Ye 2007] the same approximation ratio 𝜋
4 is achieved by a similar ap-

proach. They additionally present a 𝑐/ log(𝑛) approximation result for the maximiza-
tion problem with arbitrary matrices (i.e. also negative definite or indefinite) with zero
diagonal entries. The constant 𝑐 depends on the matrix entries. As the maximization
problem with matrix 𝐻 is equivalent to the minimization problem with −𝐻, this result
gives useful insights to the minimization problem.

In [Luo et al. 2007] the related problem to find min{𝑧𝐻𝐻𝑧 : 𝑧 ∈ C𝑛, |𝑧𝑖| ≥ 1, 𝑖 =
1, . . . , 𝑛} with a positive semidefinite matrix 𝐻 is considered. By SDP relaxation they
prove an 8𝑛 approximation algorithm for this problem.

Denote 𝑓(𝑧) = 𝑧𝐻𝐻𝑧 and by 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 the minimum and maximum of 𝑓 over
𝜕𝒰𝑛, respectively. Then it is known from [Luo; Luo; Kisialiou 2003] that for every local
minimum 𝑧* it is

𝑓(𝑧*)− 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

≤ 1
2 .

All these approaches are interesting from a theoretical perspective. However, the results
for the minimization problem are too weak to be relevant in practice. Hence, in this
chapter we consider local solution algorithms and show that they solve the problem
up to good solution quality in very short time.

3.3 NP-Hardness

We prove the NP-hardness of the strict circle rotation problem by reduction from the
NP-hard matrix partition problem:

Matrix Partition Decision Problem (MPD): Given a matrix𝐺 = (𝑔1, . . . , 𝑔𝑛) ∈
R𝑚×𝑛 where 𝑔𝑖 denotes column 𝑖, is there a subset 𝐼 of {1, . . . , 𝑛} such that

∑︁
𝑘∈𝐼

𝑔𝑘 = 1
2

𝑛∑︁
𝑘=1

𝑔𝑘.

Hermitian Minimization Decision Problem (HMD): Given a positive semidef-
inite Hermitian matrix 𝐻 ∈ C𝑛×𝑛, is there 𝑧 ∈ 𝜕𝒰𝑛 such that 𝑧𝐻𝐻𝑧 = 0.
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3 Circle Rotation Problem

Circle Rotation Decision Problem (CRD): Given a circuit and a constant 𝐾,
is there 𝑧 ∈ 𝜕𝒰𝑛 such that wl(𝑧) ≤ 𝐾.

In [Zhang; Huang 2006] the following theorem is shown. For completeness, we sum-
marize the proof here.

Theorem 3.5. The Hermitian minimization decision problem (HMD) is NP-hard.

Proof. Decision variables are 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧2𝑛)𝑇 . Denote the identity matrix by 𝐼𝑛

and by 1𝑛 the all one vector with 𝑛 elements . Define 𝐻 = 𝐷𝑇𝐷 with

𝐷 =
(︃
−1𝑛 𝐼𝑛 𝐼𝑛

−1
2𝐺1𝑛 𝐺 0

)︃
∈ R(𝑚+𝑛)×(2𝑛+1).

We show that a solution of the (MPD) exists if and only if the (HMD) has a solution
for 𝐻. It follows

𝑧𝐻𝐻𝑧 = 0
⇐⇒ 𝐷𝑧 = 0
⇐⇒ 𝑧𝑘 + 𝑧𝑛+𝑘 = 𝑧0 for 𝑘 = 1, . . . , 𝑛 (3.3)

∧
𝑛∑︁

𝑘=1
𝑧𝑘𝑔𝑘 = 𝑧0

2

𝑛∑︁
𝑘=1

𝑔𝑘. (3.4)

Let 𝑧𝑘

𝑧0
= exp(𝚤𝜙𝑘), then for 𝑘 = 1, . . . , 𝑛 (3.3) is equivalent to cos𝜙𝑘 + cos𝜙𝑛+𝑘 = 1

and sin𝜙𝑘 + sin𝜙𝑛+𝑘 = 0. It follows 𝜙𝑘 = ±𝜋
3 and especially cos𝜙𝑘 = cos𝜙𝑛+𝑘 = 1

2
and sin𝜙𝑘 = ±1

2 for 𝑘 = 1, . . . , 2𝑛. Now (3.4) is equivalent to

𝑛∑︁
𝑘=1

𝑧𝑘

𝑧0
𝑔𝑘 = 1

2

𝑛∑︁
𝑘=1

𝑔𝑘

⇐⇒ ℜ
(︃

𝑛∑︁
𝑘=1

𝑧𝑘

𝑧0
𝑔𝑘

)︃
= ℜ

(︃
1
2

𝑛∑︁
𝑘=1

𝑔𝑘

)︃
∧ ℑ

(︃
𝑛∑︁

𝑘=1

𝑧𝑘

𝑧0
𝑔𝑘

)︃
= ℑ

(︃
1
2

𝑛∑︁
𝑘=1

𝑔𝑘

)︃

⇐⇒
𝑛∑︁

𝑘=1
cos(𝜙𝑘)𝑔𝑘 = 1

2

𝑛∑︁
𝑘=1

𝑔𝑘 ∧
𝑛∑︁

𝑘=1
sin(𝜙𝑘)𝑔𝑘 = 0.

As cos𝜙𝑘 = 1
2 the first equation is always true. As sin𝜙𝑘 ∈

{︁
−1

2 ,+
1
2

}︁
the second

equation is equivalent to the existence of a matrix partition of 𝐺.

Theorem 3.6. Let CR[𝑛] denote the problem CR with 𝑛 circles. Let HM[𝑛] denote
the Problem HM with a 𝑛× 𝑛 matrix.

(i) Each instance of CR[𝑛] can be formulated as instance of HM[𝑛+ 1].

(ii) Each instance of HM[𝑛] can be formulated as instance of CR[𝑛] up to an additive
constant.
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3.3 NP-Hardness

Proof. Proof of (i): Consider an instance of CR[𝑛]. Then the wire length is

wl(𝑧) = 𝑏+ 𝑢𝐻𝑧 + 𝑧𝐻𝑢 + 𝑧𝐻𝐴𝑧 =
[︁
𝑧𝐻 1

]︁ [︃ 𝐴 𝑢
𝑢𝐻 𝑏

]︃ [︃
𝑧
1

]︃
=:
[︁
𝑧𝐻 1

]︁
𝐻

[︃
𝑧
1

]︃
.

Let 𝑤̃ be an optimal solution of the instance of HM[𝑛+ 1]:

𝑤̃ ∈ argmin
𝑤∈𝜕𝒰𝑛+1

𝑤𝐻𝐻𝑤.

As 𝑤̃𝑛+1 ̸= 0, we can define 𝑧̃ by 𝑧𝑖 = 𝑤̃𝑖

𝑤̃𝑛+1
, 𝑖 = 1, . . . , 𝑛. Then 𝑧̃ is an optimal solution

of the circle rotation problem instance.

Proof of (ii): Now consider an instance of HM[𝑛]. Denote the Hermitian positive
semidefinite matrix by 𝐻 = (ℎ𝑖𝑗) ∈ C𝑛×𝑛. Define an instance of C[𝑛] as follows:
There are 𝑛 circles centered in the origin. There are nets {𝑖, 𝑗} for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 with
weight 1. Net {𝑖, 𝑗} is connected to pin (𝑖, 𝑗) on circle 𝑖 and to pin (𝑗, 𝑖) on circle 𝑗.
The offset of pin (𝑖, 𝑗) is 𝑝𝑖𝑗 ∈ C. Set

𝑝𝑖𝑗 :=

⎧⎪⎪⎨⎪⎪⎩
1 for 𝑖 < 𝑗,

0 for 𝑖 = 𝑗,

−ℎ𝑖𝑗 for 𝑖 > 𝑗.

Furthermore, set 𝐾 = ∑︀𝑛
𝑖,𝑗=1 |𝑝𝑖𝑗|2 −

∑︀𝑛
𝑖=1 ℎ𝑖𝑖. It is

for 𝑖 < 𝑗 : −𝑝𝑖𝑗𝑝𝑗𝑖 = −1 · (−ℎ𝑗𝑖) = ℎ𝑗𝑖 = ℎ𝑖𝑗,

for 𝑖 > 𝑗 : −𝑝𝑖𝑗𝑝𝑗𝑖 = −(−ℎ𝑖𝑗) · 1 = ℎ𝑖𝑗,

for 𝑖 = 𝑗 : −𝑝𝑖𝑗𝑝𝑗𝑖 = 0.

The pin position 𝑞𝑖𝑗 of pin (𝑖, 𝑗) is 𝑧𝑖𝑝𝑖𝑗. As |𝑧𝑖| = 1 for 𝑖 = 1, . . . , 𝑛 we have

wl(𝑧) =1
2

𝑛∑︁
𝑖,𝑗=1
|𝑧𝑖𝑝𝑖𝑗 − 𝑧𝑗𝑝𝑗𝑖|2

=1
2

𝑛∑︁
𝑖,𝑗=1

(︁
|𝑝𝑖𝑗|2 + |𝑝𝑗𝑖|2 − 𝑧𝑖𝑝𝑖𝑗𝑧𝑗𝑝𝑗𝑖 − 𝑧𝑖𝑝𝑖𝑗𝑧𝑗𝑝𝑗𝑖

)︁

=
𝑛∑︁

𝑖,𝑗=1
|𝑝𝑖𝑗|2 −

𝑛∑︁
𝑖,𝑗=1

𝑝𝑖𝑗𝑝𝑗𝑖𝑧𝑖𝑧𝑗

=
𝑛∑︁

𝑖,𝑗=1
|𝑝𝑖𝑗|2 +

𝑛∑︁
𝑖,𝑗=1

(−𝑝𝑖𝑗𝑝𝑗𝑖)𝑧𝑖𝑧𝑗 +
𝑛∑︁

𝑖=1
ℎ𝑖𝑖𝑧𝑖𝑧𝑖 −

𝑛∑︁
𝑖=1

ℎ𝑖𝑖𝑧𝑖𝑧𝑖

=
𝑛∑︁

𝑖,𝑗=1
ℎ𝑖𝑗𝑧𝑖𝑧𝑗 +

𝑛∑︁
𝑖,𝑗=1
|𝑝𝑖𝑗|2 −

𝑛∑︁
𝑖=1

ℎ𝑖𝑖

=𝑧𝐻𝐻𝑧 +𝐾.

It follows 𝑧𝐻𝐻𝑧 = wl(𝑧)−𝐾. Thus the Hermitian minimization problem is formulated
as circle rotation problem up to an additive constant.
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3 Circle Rotation Problem

Corollary 3.7 (Strict Circle Rotation Problem is NP-Hard). The circle rotation de-
cision problem (CRD) is NP-hard, even if all circles are centered in the origin and all
nets have weight 1 and contain only two pins.

Proof. We show a reduction from the NP-hard problem (HMD) to (CRD). Let 𝐻 be
a positive semidefinite Hermitian matrix 𝐻 ∈ C𝑛×𝑛. HMD is satisfied if and only if
min𝑧∈𝜕𝒰 𝑧𝐻𝐻𝑧 ≤ 0.

By Theorem 3.6 there is an instance 𝐼 of CR and a constant 𝐾 such that

min
𝑧∈𝜕𝒰

𝑧𝐻𝐻𝑧 = min
𝑧∈𝜕𝒰

wl(𝑧) +𝐾.

So HMD is satisfied for this 𝐻 if and only if (CRD) is satisfied for this instance 𝐼 and
the constant 𝐾.

Furthermore, obviously (CRD) is in NP, as for a solution 𝑧 it can be checked if wl(𝑧) ≤
𝐾 by evaluating a Hermitian form.

3.4 Problem in Clique Net Model

3.4.1 Absolute Approximation Error in Euclidean Encoding

We know by Lemma 3.1 that the wire length is of the form

wl(𝑧) = 𝑏+ 𝑢𝐻𝑧 + 𝑧𝐻𝑢 + 𝑧𝐻𝐴𝑧

with 𝑏 = 𝑐𝐻Φ𝑇𝑄Φ𝑐, 𝑢 = Φ𝑇𝑃𝐻𝑄Φ𝑐 and 𝐴 = Φ𝑇𝑃𝐻𝑄𝑃Φ positive semidefinite.

Theorem 3.8. Let wl𝑟 be the minimum in the relaxed model and wl𝑠 the minimum
in the strict model, i.e.

wl𝑟 = min
𝑧∈𝒰𝑛

wl(𝑧), wl𝑠 = min
𝑧∈𝜕𝒰𝑛

wl(𝑧).

If 𝑄 ̸= 0 it is

0 ≤ wl𝑠−wl𝑟 ≤ ||𝐴||1 =
𝑛∑︁

𝑖,𝑗=1
|𝑎𝑖𝑗|

and for min𝑖,𝑗 |𝑐𝑖 − 𝑐𝑗| → ∞ we get

|wl𝑠−wl𝑟|
|wl𝑟| → 0.
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3.4 Problem in Clique Net Model

Proof. Define

𝑢′ ∈ −Normed [𝑢] = − (Normed [𝑢1] , . . . ,Normed [𝑢𝑛])𝑇 .

Then it is 𝑢′ ∈ 𝜕𝒰 and for the wire length we get

wl𝑟 ≥ 𝑏− 2 ||𝑢||1
wl𝑠 ≤ wl(𝑢′) = 𝑏− 2 ||𝑢||1 + (𝑢′)𝐻𝐴𝑢′ = 𝑏− 2 ||𝑢||1 + ||𝐴||1

and so the first statement follows.

Take a net (with weight 𝜇) connecting at least two circles 𝑖 and 𝑗. Denote the offset
of the pins of this net by 𝑝𝑖 and 𝑝𝑗. The length of this net in the restricted model is
greater or equal to |𝑐𝑖 − 𝑐𝑗| − 𝑝𝑖 − 𝑝𝑗. Thus we get

wl𝑟 ≥ 𝜇(|𝑐𝑖 − 𝑐𝑗| − 𝑝𝑖 − 𝑝𝑗)2 →∞

and together with the first statement the second statement follows.

3.4.2 Circle Rotation Problem with Angle Encoding

In Definition 3.2 we encoded the circle rotation problem as a Hermitian form over
the domain 𝜕𝒰𝑛. Another natural encoding is to encode each circle rotation by its
angle. So the rotation of circle 𝑗 is given by its angle 𝜙𝑗 and the decision variables
are 𝜙 = (𝜙1, . . . , 𝜙𝑛). This is the same as encoding the rotation 𝑧𝑗 of circle 𝑗 in polar
coordinates 𝑧𝑗 = exp(𝚤𝜙𝑗) where the constraints |𝑧𝑗| = 1 are inherently satisfied.

Denoting exp(𝚤𝜙) = (exp(𝚤𝜙1), . . . , exp(𝚤𝜙𝑛))𝑇 , for the wire length depending on 𝜙 we
get with the notations 𝑏, 𝑢 and 𝐴 as in Definition 3.2

wl(𝜙) = 𝑏+ 𝑢𝐻 exp(𝚤𝜙) + exp(𝚤𝜙)𝐻𝑢 + exp(𝚤𝜙)𝐻𝐴 exp(𝚤𝜙). (3.5)

The advantage of this formulation for non-linear solvers is that it is an unconstrained
optimization problem. However, the disadvantage is that the objective function is
non-convex and involves trigonometric functions.

3.4.3 Solution by Block Coordinate Descent Method

We know by Theorem 3.6 that with Ψ as in Definition 2.20

wl(𝑧) = 𝑏+ 2ℜ(𝑢𝐻𝑧) + 𝑧𝐻𝐴𝑧 = Ψ[𝐴,𝑢, 𝑏].
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3 Circle Rotation Problem

Recall that Definition 2.5 denotes 𝜋𝑘(𝑧) to be the vector with removed 𝑘-th coordinate.
We denote by wl𝑘(·, 𝜋𝑘(𝑧)) the wire length when only rotating the 𝑘-th circle for fixed
other circles. Then it is

wl𝑘(·, 𝜋𝑘(𝑧)) = Ψ𝑘(·, 𝜋𝑘(𝑧))

= 𝜓

⎡⎣𝑎𝑘𝑘,
∑︁
𝑖 ̸=𝑘

𝑎𝑘𝑖𝑧𝑖 + 𝑢𝑘,
∑︁

𝑖,𝑗 ̸=𝑘

𝑎𝑖𝑗𝑧𝑖𝑧𝑗 + 2ℜ
⎛⎝∑︁

𝑖 ̸=𝑘

𝑧𝑖𝑢𝑖

⎞⎠+ 𝑏

⎤⎦ .
By Lemma 2.18 we compute the minimum of wl𝑘(·, 𝜋𝑘(𝑧)) as

argmin
𝜉∈𝜕𝒰

wl𝑘(𝜉, 𝜋𝑘(𝑧)) = −Normed
⎡⎣∑︁

𝑖 ̸=𝑘

𝑎𝑘𝑖𝑧𝑖 + 𝑢𝑘

⎤⎦ .
Now we can apply the block coordinate descent method from Section 2.6. Geometri-
cally this method means that, starting from an initial solution, each circle is optimally
rotated subsequently while keeping the other circles fixed. This is done repeatedly for
circles 1, . . . , 𝑛 until the progress during the last 𝑛 circle rotations is too small.

Note that, while the objective is convex, the prerequisites of Theorem 2.35 are not
satisfied, as neither the domains 𝜕𝒰 of the subproblems are convex, nor the optimum
is unique in all cases. A non-unique optimum for the rotation of a single circle 𝑘 can
occur, as for ∑︀𝑖 ̸=𝑘 𝑎𝑘𝑖𝑧𝑖 + 𝑢𝑘 = 0 the function wl𝑘 is constant on 𝜕𝒰 and we get

argmin
𝜉∈𝜕𝒰

wl𝑘(𝜉, 𝜋𝑘(𝑧)) = −Normed
⎡⎣∑︁

𝑖 ̸=𝑘

𝑎𝑘𝑖𝑧𝑖 + 𝑢𝑘

⎤⎦ = −Normed [0] = 𝜕𝒰 .

However, by Remark 2.36 the algorithm is guaranteed to terminate, also the sequence
of solutions might not converge to a local optimum.

3.5 Problem in Star Net Model

In this section we formulate the circle rotation problem in the star model. First we
show that clique and star model are equivalent. This means that if the net weights in
the models are chosen appropriately, the net length in both models is equal. However,
the star model gives additional insights into the problem. In particular, it is possible
to formulate the optimization problem as problem in the net centers and analytically
compute the rotations.
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3.5 Problem in Star Net Model

3.5.1 General Equivalence of Star Model and Clique Model

Definition 3.9 (Star Model). Let 𝑞 = (𝑞1, . . . , 𝑞𝑚)𝑇 ∈ C𝑚 be the pin positions of a
net and 𝑠 ∈ C be an arbitrary point called net center. Then the star net length of the
net is

nl𝑠𝑡𝑎𝑟(𝑞, 𝑠) =
𝑚∑︁

𝑙=1
|𝑞𝑙 − 𝑠|2 .

In [Viswanathan; Chu 2004] the following results are shown.

Lemma 3.10 (Optimal Net Center is in the Gravity Center). Let 𝑞 ∈ C𝑚 be the pin
positions of a net. Then the star net length nl𝑠𝑡𝑎𝑟(𝑞, 𝑠) is minimal, if and only if the
net center 𝑠 is the gravity center of 𝑞.

Proof. For the gradient we have

0 = ∇𝑠 nl𝑠𝑡𝑎𝑟(𝑞, 𝑠) =
𝑚∑︁

𝑙=1
(𝑞𝑙 − 𝑠) = −𝑚𝑠+

𝑚∑︁
𝑙=1

𝑞𝑙 ⇐⇒ 𝑠 = 1
𝑚

𝑚∑︁
𝑙=1

𝑞𝑙,

i.e. the gravity center is the only stationary point and turns out to be the unique
global minimum.

Lemma 3.11. Let 𝑞 ∈ C𝑚 be pin positions and 𝑠 ∈ C the gravity center of 𝑞. Then
it is

nl(𝑞) = 𝑚 · nl𝑠𝑡𝑎𝑟(𝑞, 𝑠).

Proof. We compute

nl𝑠𝑡𝑎𝑟(𝑞, 𝑠) =
𝑚∑︁

𝑙=1
|𝑞𝑙 − 𝑠|2 =

𝑚∑︁
𝑙=1
|𝑞𝑙|2 +𝑚 |𝑠|2 − 𝑠

𝑚∑︁
𝑙=1

𝑞𝑙 − 𝑠
𝑚∑︁

𝑙=1
𝑞𝑙

=
𝑚∑︁

𝑙=1
|𝑞𝑙|2 + 1

𝑚

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝑞𝑘

⃒⃒⃒⃒
⃒
2

− 1
𝑚

𝑚∑︁
𝑘=1

𝑞𝑘

𝑚∑︁
𝑙=1

𝑞𝑙 −
1
𝑚

𝑚∑︁
𝑘=1

𝑞𝑘

𝑚∑︁
𝑙=1

𝑞𝑙

=
𝑚∑︁

𝑙=1
|𝑞𝑙|2 −

1
𝑚

𝑚∑︁
𝑘,𝑙=1

𝑞𝑘𝑞𝑙 = 1
𝑚

𝑞𝐻(𝑚𝐼𝑚 − 1𝑚)𝑞 = 1
𝑚

nl(𝑞).

In general there is more than one net. As in Definition 2.43 we define the total wire
length to be the weighted sum of the lengths of the different nets. In Lemma 3.11 the
ratio between star and clique wire length of a net depends on the number of pins in
the net. So for the total wire length to be equal in both models, we have to rescale
the net weights. With 𝑚𝑘 denoting the number of pins of net 𝑘 and 𝜇𝑘 the weight
of net 𝑘 in the clique model, the weight of net 𝑘 in the star model is defined to be
𝜇′

𝑘 := 𝑚𝑘𝜇𝑘.
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3 Circle Rotation Problem

Definition 3.12 (Total Wire Length in the Star Model). Let 𝑞 ∈ C𝑚 be the vector
of all pin positions. Let 𝑁𝑘 be the pin selection matrix of net 𝑘, i.e. 𝑞𝑘 = 𝑁𝑘𝑞 are the
pin positions of net 𝑘. Let 𝜇′

𝑘 be the weight of net 𝑘 in the star model. Let 𝑠 ∈ C𝑚 be
the net centers. The total wire length is

wl𝑠𝑡𝑎𝑟(𝑞, 𝑠) =
𝑜∑︁

𝑘=1
𝜇′

𝑘 · nl𝑠𝑡𝑎𝑟(𝑞𝑘, 𝑠𝑘).

An immediate consequence of Lemma 3.11 is the equivalence of the total wire length
in the clique and in the star model. In fact, Definition 3.12 was just stated such that
both values are equal for the optimal choice of the net centers.

Corollary 3.13 (Clique and Star Model are Equivalent). If the net centers 𝑠* are
optimal chosen (i.e. as the gravity center of the corresponding nets), it is

wl𝑠𝑡𝑎𝑟(𝑞, 𝑠*) = wl(𝑞).

Proof. By Definition 3.12, Lemma 3.11 and the definition 𝜇′
𝑘 := 𝑚𝑘𝜇𝑘 it follows

wl𝑠𝑡𝑎𝑟(𝑞, 𝑠*) =
𝑜∑︁

𝑘=1
𝜇′

𝑘 · nl𝑠𝑡𝑎𝑟(𝑞𝑘, 𝑠
*
𝑘) =

𝑜∑︁
𝑘=1

𝜇𝑘 · nl(𝑞𝑘) = wl(𝑞).

3.5.2 Star Model for the Rotation Problem

The absolute pin positions 𝑞 in the circle rotation problem are defined by the circle
rotations by (3.1). So the total wire length wl𝑠𝑡𝑎𝑟(𝑞, 𝑠) depends on the circle rotations
and the net centers.

In the following let 𝒫𝑘 denote the pins of net 𝑘 and 𝒫𝑗 denote the pins of circle 𝑗.
Furthermore, 𝑘(𝑙) is the net of pin 𝑙 and 𝑗(𝑙) is the circle of pin 𝑙. Recall that with Φ
being the circle-to-pin matrix and pins and 𝑃 the diagonal matrix of the pin offsets
as in (3.1), it is 𝑞 = Φ𝑐 + 𝑃Φ𝑧. Then we get

wl𝑠𝑡𝑎𝑟(𝑧, 𝑠) := wl𝑠𝑡𝑎𝑟(𝑞, 𝑠) =
𝑜∑︁

𝑘=1
𝜇′

𝑘 nl(𝑞𝑘, 𝑠𝑘)

=
𝑜∑︁

𝑘=1

∑︁
𝑙∈𝒫𝑘

𝜇′
𝑘

⃒⃒⃒
𝑐𝑗(𝑙) + 𝑧𝑗(𝑙)𝑝𝑙 − 𝑠𝑘

⃒⃒⃒2
.

(3.6)

We already know by Lemma 3.10, how to choose the net centers based on the pin
positions or, equivalently, on the circle rotations, such that the wire length becomes
optimal. In the following we are going to show that for given net centers we can also
analytically compute the circle rotations such that the wire length becomes optimal.
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3.5 Problem in Star Net Model

We first find a different representation of the wire length in the star model. In (3.6),
first the wire length of all nets are computed and then summed up. We can also first
compute all weighted distances of the pins of a circle to their corresponding net centers,
and then sum of these weighted connection lengths of each circle.

Theorem 3.14. The weighted connection length wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) of the pins of circle 𝑗 to
the corresponding net centers only depends on the rotation of circle 𝑗 and it is

wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) =
∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)

⃒⃒⃒
𝑐𝑗 + 𝑧𝑗𝑝𝑙 − 𝑠𝑘(𝑙)

⃒⃒⃒2
= 𝜓[𝑎𝑗, 𝑢𝑗(𝑠), 𝑏𝑗(𝑠)] (*)

with

𝑎𝑗 =
𝑚∑︁

𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙) |𝑝𝑙|2 ,

𝑢𝑗(𝑠) =
𝑚∑︁

𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)𝑝𝑙

(︁
𝑠𝑘(𝑙) − 𝑐𝑗

)︁
,

𝑏𝑗(𝑠) =
𝑚∑︁

𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)

⃒⃒⃒
𝑠𝑘(𝑙) − 𝑐𝑗

⃒⃒⃒2
.

For the wire length the following identity holds

wl𝑠𝑡𝑎𝑟(𝑧, 𝑠) =
𝑛∑︁

𝑗=1
wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠). (**)

Proof. Identity (*) can be seen by
𝑚∑︁

𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)

⃒⃒⃒
𝑐𝑗 + 𝑧𝑗𝑝𝑙 − 𝑠𝑘(𝑙)

⃒⃒⃒2
= |𝑧𝑗|2 𝑎𝑗 + 2ℜ(𝑧𝑗𝑢𝑗(𝑠)) + 𝑏𝑗(𝑠) = 𝜓[𝑎𝑗, 𝑢𝑗(𝑠), 𝑏𝑗(𝑠)].

Then we get identity (**):

wl𝑠𝑡𝑎𝑟(𝑧, 𝑠) =
𝑜∑︁

𝑘=1

∑︁
𝑙∈𝒫𝑘

𝜇′
𝑘

⃒⃒⃒
𝑐𝑗(𝑙) + 𝑧𝑗(𝑙)𝑝𝑙 − 𝑠𝑘

⃒⃒⃒2
=

𝑚∑︁
𝑙=1

𝜇′
𝑘

⃒⃒⃒
𝑐𝑗(𝑙) + 𝑧𝑗(𝑙)𝑝𝑙 − 𝑠𝑘(𝑙)

⃒⃒⃒2
=

𝑛∑︁
𝑗=1

∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)

⃒⃒⃒
𝑐𝑗 + 𝑧𝑗𝑝𝑙 − 𝑠𝑘(𝑙)

⃒⃒⃒2
=

𝑛∑︁
𝑗=1

wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠).
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3 Circle Rotation Problem

(a) Orthogonality of the net
centers and the pin offsets.

(b) Linear dependence of the
net centers and the pin off-
sets.

Figure 3.2: A circle is stretched, if the angle between the net centers and the pin offsets
is not too big. For linear dependent pin offsets, the circles are stretched,
as all net lengths decrease with growing circle. For orthogonal pin offsets,
whenever one net decreases its length another net increases the length.

These values 𝑎𝑗, 𝑢𝑗 and 𝑏𝑗 have a geometric interpretation.

The value 𝑎𝑗 is the weighted sum of pin offsets of component 𝑗. This is geometrically
intuitive, as this coefficient is related to |𝑧𝑗|2 and thus related to the size of the circle.
However, if the pin offsets are further away from the circle center, shrinking and
stretching the circle has a bigger impact on the wire length.

The value 𝑢𝑗 is the (weighted) scalar product of the pin offsets and the location
of the corresponding connection points relative to the circle center. So 𝑢𝑗 has large
magnitude, if the vector of pin offsets (𝑝𝑙) and the vector of corresponding net center
positions relative to the circle center (𝑠𝑘(𝑙) − 𝑐𝑗) are nearly linearly dependent. It has
a small magnitude, if they are nearly orthogonal. This is visualized in Figure 3.2. If
both vectors are linear dependent, for the perfect rotation every pin position is on the
connection from the net center to the circle center and the difference between the best
rotation and the worst rotation is large. If both vectors are orthogonal, there is no
particular good rotation and the difference between the best and the worst rotation is
small.

The value 𝑏𝑗 is the weighted distance from the circle center to the net centers. This is
independent of the rotation and, of course, influences the wire length.

We observe that if we assume the net centers to be fixed, the wire length wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠)
only depends on the rotation of circle 𝑗. So we have decoupled the rotations from each
other. Furthermore, we already know for given circle rotations and thus for given pin
positions, how to choose the net centers for optimal wire length. Conversely, based
on Lemma 2.18 we show that for given net centers we can analytically compute the
optimal circle rotations in the strict and in the relaxed model.
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3.5 Problem in Star Net Model

Definition 3.15 (Wire Length of the Net Centers). We define the wire length for each
circle and the total wire length depending on the net centers as

wl𝑠,𝑗
𝑠𝑡𝑎𝑟(𝑠) := min

𝑧𝑗∈𝜕𝒰
wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠), wl𝑠𝑠𝑡𝑎𝑟(𝑠) :=

𝑛∑︁
𝑗=1

wl𝑠,𝑗
𝑠𝑡𝑎𝑟(𝑠),

wl𝑟,𝑗
𝑠𝑡𝑎𝑟(𝑠) := min

𝑧𝑗∈𝒰
wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠), wl𝑟𝑠𝑡𝑎𝑟(𝑠) :=

𝑛∑︁
𝑗=1

wl𝑟,𝑗
𝑠𝑡𝑎𝑟(𝑠).

Lemma 3.16. The function wl𝑠𝑠𝑡𝑎𝑟(𝑠) is

wl𝑠𝑠𝑡𝑎𝑟(𝑠) = 𝑠𝐻𝐷𝑠 + 2ℜ(𝑣𝑇 𝑠 + 𝑣0) + 𝑏− 2
𝑛∑︁

𝑗=1

⃒⃒⃒
𝑤𝐻

𝑗 𝑠 + 𝑑𝑗

⃒⃒⃒
with

𝑣 = (𝑚𝑘𝜇
′
𝑘)𝑘=1,...,𝑜, 𝑣0 = −

𝑚∑︁
𝑙=1

𝜇′
𝑘(𝑙)𝑐𝑗(𝑙),

𝐷 = diag(𝑣), 𝑏 =
𝑚∑︁

𝑙=1
𝜇′

𝑘(𝑙)

(︂
|𝑝𝑙|2 +

⃒⃒⃒
𝑐𝑗(𝑙)

⃒⃒⃒2)︂
,

𝑤𝑗 = (𝜇′
𝑘

∑︁
𝑙∈𝒫𝑗∩𝒫𝑘

𝑝𝑙)𝑘=1,...,𝑜, 𝑑𝑗 = −
∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)𝑝𝑙𝑐𝑗.

Proof. We compute the strict optimal rotation of circle 𝑗 by Lemma 2.18 and get
wl𝑠,𝑗

𝑠𝑡𝑎𝑟(𝑠) = 𝑎𝑗 + 𝑏𝑗(𝑠)− 2 |𝑢𝑗(𝑠)|. With 𝑚𝑘 = |𝒫𝑘| being the number of pins in net 𝑘:

wl𝑠𝑠𝑡𝑎𝑟(𝑠) =
𝑛∑︁

𝑗=1
wl𝑠,𝑗

𝑠𝑡𝑎𝑟(𝑠)

=
𝑛∑︁

𝑗=1

⎛⎝∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)(|𝑝𝑙|2 +

⃒⃒⃒
𝑠𝑘(𝑙) − 𝑐𝑗

⃒⃒⃒2
)− 2

⃒⃒⃒⃒
⃒⃒∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)𝑝𝑙

(︁
𝑠𝑘(𝑙) − 𝑐𝑗

)︁⃒⃒⃒⃒⃒⃒
⎞⎠

=
𝑚∑︁

𝑙=1
𝜇′

𝑘(𝑙) |𝑝𝑙|2 +
𝑚∑︁

𝑙=1
𝜇′

𝑘(𝑙)

⃒⃒⃒
𝑠𝑘(𝑙)

⃒⃒⃒2
− 2

𝑚∑︁
𝑙=1

𝜇′
𝑘(𝑙)ℜ(𝑠𝑘(𝑙)𝑐𝑗(𝑙)) +

𝑚∑︁
𝑙=1

𝜇′
𝑘(𝑙)

⃒⃒⃒
𝑐𝑗(𝑙)

⃒⃒⃒2

− 2
𝑛∑︁

𝑗=1

⃒⃒⃒⃒
⃒⃒∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)𝑝𝑙(𝑠𝑘(𝑙) − 𝑐𝑗)

⃒⃒⃒⃒
⃒⃒

=
𝑜∑︁

𝑘=1
𝑚𝑘𝜇

′
𝑘 |𝑠𝑘|2 − 2ℜ

(︃
𝑜∑︁

𝑘=1
𝑚𝑘𝜇

′
𝑘𝑠𝑘 −

𝑚∑︁
𝑙=1

𝜇′
𝑘(𝑙)𝑐𝑗(𝑙)

)︃
+

𝑚∑︁
𝑙=1

𝜇′
𝑘(𝑙)(|𝑝𝑙|2 +

⃒⃒⃒
𝑐𝑗(𝑙)

⃒⃒⃒2
)

− 2
𝑛∑︁

𝑗=1

⃒⃒⃒⃒
⃒⃒ 𝑜∑︁
𝑘=1

𝑠𝑘𝜇
′
𝑘

∑︁
𝑙∈𝒫𝑗∩𝒫𝑘

𝑝𝑙 −
∑︁
𝑙∈𝒫𝑗

𝜇′
𝑘(𝑙)𝑝𝑙𝑐𝑗

⃒⃒⃒⃒
⃒⃒

= 𝑠𝐻𝐷𝑠 + 2ℜ(𝑣𝑇 𝑠 + 𝑣0) + 𝑏− 2
𝑛∑︁

𝑗=1

⃒⃒⃒
𝑤𝐻

𝑗 𝑠 + 𝑑𝑗

⃒⃒⃒
.
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3 Circle Rotation Problem

We can now evaluate the wire length depending only on the net centers, depending
only on the circle rotation, or depending on both. The following Lemma 3.17 shows
the intuitive fact that all three optimization methods are equivalent.

Lemma 3.17. Let 𝑋 ⊂ F𝑛, 𝑌 ⊂ F𝑚 and 𝑓 : 𝑋 × 𝑌 → R. Set

𝑦(𝑥) ∈ 𝑌 (𝑥) := argmin
𝑦∈𝑌

𝑓(𝑥, 𝑦), 𝑓𝑥 : 𝑋 → R, 𝑓𝑥(𝑥) := 𝑓(𝑥, 𝑦(𝑥))

𝑥(𝑦) ∈ 𝑋(𝑦) := argmin
𝑥∈𝑋

𝑓(𝑥, 𝑦), 𝑓𝑦 : 𝑌 → R, 𝑓𝑦(𝑦) := 𝑓(𝑥(𝑦), 𝑦)

where the sets 𝑌 (𝑥) and 𝑋(𝑦) are never empty. Then the following statements are
equivalent

1. 𝑓 has a global optimum in (𝑥0, 𝑦0).

2. 𝑓𝑥 has a global optimum in 𝑥0 and 𝑦0 ∈ 𝑌 (𝑥0).

3. 𝑓𝑦 has a global optimum in 𝑦0 and 𝑥0 ∈ 𝑋(𝑦0).

Proof. We show 1 ⇐⇒ 2, as 1 ⇐⇒ 3 is similar.

As for 𝑦1, 𝑦2 ∈ 𝑌 (𝑥) it is 𝑓(𝑥, 𝑦1) = min𝑦∈𝑌 𝑓(𝑥, 𝑦) = 𝑓(𝑥, 𝑦2), the function 𝑓𝑥 is well
defined.

Assume 𝑓𝑥 has a global optimum in 𝑥0 and 𝑦0 ∈ 𝑌 (𝑥0). Then it is for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 :

𝑓(𝑥, 𝑦) ≥ 𝑓(𝑥, 𝑦(𝑥)) = 𝑓𝑥(𝑥) ≥ 𝑓𝑥(𝑥0) = 𝑓(𝑥0, 𝑦(𝑥0)) = 𝑓(𝑥0, 𝑦0).

Assume 𝑓 has a global optimum in (𝑥0, 𝑦0). Then by definition 𝑦0 ∈ 𝑌 (𝑥0) and for all
𝑥 ∈ 𝑋 we have

𝑓𝑥(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) ≥ 𝑓(𝑥0, 𝑦0) = 𝑓(𝑥0, 𝑦(𝑥0)) = 𝑓𝑥(𝑥0).

Recall that the rotation problem is denoted CR in the strict model and CRR in the
relaxed model. Then we get the set of equivalent problems:

(𝐶𝑅) ⇐⇒ min
𝑧∈𝜕𝒰𝑛

wl(𝑧) ⇐⇒ min
𝑧∈𝜕𝒰𝑛

𝑠∈C𝑜

wl𝑠𝑡𝑎𝑟(𝑧, 𝑠) ⇐⇒ min
𝑠∈C𝑜

wl𝑠𝑠𝑡𝑎𝑟(𝑠),

(𝐶𝑅𝑅) ⇐⇒ min
𝑧∈𝒰𝑛

wl(𝑧) ⇐⇒ min
𝑧∈𝒰𝑛

𝑠∈C𝑜

wl𝑠𝑡𝑎𝑟(𝑧, 𝑠) ⇐⇒ min
𝑠∈C𝑜

wl𝑟𝑠𝑡𝑎𝑟(𝑠).

CRR is a convex problem and can be solved to optimality by standard non-linear
solvers. We now compute the error of this relaxation.

Definition 3.18. For given net centers 𝑠, the circle 𝑗 is stretched, if |𝑢𝑗(𝑠)| ≥ 𝑎𝑗.
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3.6 Numerical Results

Definition 3.19 (Relaxation Error). For net centers 𝑠 ∈ C𝑜 the relaxation error is
defined as 𝐸(𝑠) := wl𝑠𝑠𝑡𝑎𝑟(𝑠)− wl𝑟𝑠𝑡𝑎𝑟(𝑠).

Theorem 3.20. Assume a circle rotation setting with 𝑛 circles, 𝑚 pins and 𝑜 nets.
Denote for net centers 𝑠 ∈ C𝑜 the circles that are not stretched by 𝒞. Recall the
definition of 𝑎𝑗 and 𝑢𝑗(𝑠) from Theorem 3.14. Then for the relaxation error 𝐸(𝑠) we
get

𝐸(𝑠) =
∑︁
𝑗∈𝒞

𝑎𝑗

(︃
1− |𝑢𝑗(𝑠)|

𝑎𝑗

)︃2

≤
∑︁
𝑗∈𝒞

𝑎𝑗 ≤
∑︁
𝑗∈𝒞

𝑎𝑗.

Proof. By Lemma 2.19 it holds that

for 𝑗 ∈ 𝒞 : wl𝑠,𝑗
𝑠𝑡𝑎𝑟(𝑠)− wl𝑟,𝑗

𝑠𝑡𝑎𝑟(𝑠) = 𝑎𝑗

(︃
1− |𝑢𝑗(𝑠)|

𝑎𝑗

)︃2

≤ 𝑎𝑗,

for 𝑗 /∈ 𝒞 : wl𝑠,𝑗
𝑠𝑡𝑎𝑟(𝑠)− wl𝑟,𝑗

𝑠𝑡𝑎𝑟(𝑠) = 0,

and so the first equality and inequality follows. The last inequality is obvious.

Corollary 3.21 (Approximation Result in the Star Model). Denote the optimal net
centers for the relaxed model by 𝑠𝑟 and for the strict model by 𝑠𝑠. As (CRR) is a
convex problem in the rotations, the optimal relaxed solution 𝑠𝑟 can be computed by
convex optimization and we have

wl𝑠(𝑠𝑠) ≤ wl𝑠(𝑠𝑟) = wl𝑟(𝑠𝑟) + 𝐸(𝑠𝑟) ≤ wl𝑠(𝑠𝑠) + 𝐸(𝑠𝑟).

3.6 Numerical Results

3.6.1 Evaluation Settings

3.6.1.1 Algorithms

We implemented four algorithms. The non-linear algorithms were implemented in
Ipopt (see Section 2.9). Complex numbers were split into real and imaginary part. The
stop criteria were set to 𝑡𝑜𝑙 = 10−5 and 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑡𝑜𝑙 = 5 · 10−5 and 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 =
50000. All other options were left at default.

Euclid The Euclid algorithm is the implementation of Definition 3.2 in real coordinates
for Ipopt. Exact Jacobian and Hessian evaluation functions are implemented.

Angle The angle algorithm is the Ipopt implementation of the unconstrained min-
imization problem to minimize (3.5). Exact Jacobian and Hessian evaluation
functions are implemented.
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3 Circle Rotation Problem

Star The star algorithm is the implementation of the unconstrained minimization
problem to minimize wl𝑠𝑠𝑡𝑎𝑟 defined in Lemma 3.16 in real coordinates for Ipopt.
Exact Jacobian and Hessian evaluation functions are implemented. Note that at
points with 𝑢𝑗(𝑠) = 0 this model is not differentiable. However, these points are
no local optima and due to the numerical inaccuracies they do not occur in the
practical algorithms.

BCD The block coordinate descent algorithm is described in Section 3.4.3. The stop-
ping criterion is that during the last 𝑛 single circle rotations the total improve-
ment is less than 10−4.

3.6.1.2 Problem Instances

For each of the Dill circuits in Section 2.8, random and possibly overlapping placements
of the circles were generated. The generation algorithm was as follows.

For each circuit instance denote as 𝐴 the sum of the area of all circles. Furthermore,
choose an area factor 𝑎𝑓 ≥ 0. Then all circle centers 𝑐𝑖 are chosen independently
uniformly distributed from the square with area 𝑎𝑓𝐴 located in the positive quadrant
with one corner in the origin, i.e. ℜ(𝑐𝑖) and ℑ(𝑐𝑖) were chosen independently uniformly
distributed from [0,

√︁
𝑎𝑓𝐴]. So by the area factor 𝑎𝑓 the amount of overlapping is

controlled. While for small 𝑎𝑓 the circles are very likely to overlap, for larger 𝑎𝑓 the
circles are less likely to overlap. Such a randomly placed circuit instance is denoted as
problem instance.

For our numerical evaluation we chose the area factors

𝑎𝑓 ∈ {0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.

We could also think of using rectangles with different aspect ratios instead of squares.
We compared the algorithm for different aspect ratios (from 0.1 to 1), however there
was only little, if any, influence on the results and performance of all analyzed algo-
rithms. So we omit this degree of freedom in the problem instances for the numerical
evaluation.

3.6.1.3 Evaluation Method

For each of the problem instances we generated 100 feasible, random starting points
by taking the circle rotation angles 𝜙𝑗, 𝑗 ∈ 𝒞 independently uniformly distributed in
[0, 2𝜋). Based on this, for Euclid and BCD the starting vectors were defined by setting
the initial rotations to exp(𝚤𝜙𝑗), 𝑗 ∈ 𝒞. For the star algorithm, the optimal net centers
were computed based on the randomly chosen circle rotations and taken as starting
point.
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3.6 Numerical Results

Then each of the algorithms was run for each of the 100 starting points. We measured
CPU time, number of iterations, the objective value and the final solution 𝜙 as vector
of rotation angles. Some algorithms have very short running times for small problem
instances. To avoid inaccuracies in the CPU time, we ran an algorithm multiple times
per problem instance and initial solution, until at least 1 CPU second was used. By
dividing the total CPU time through the number of runs, the average time per run
could be measured with higher precision. As the algorithms are not randomized, all
these repeated runs yield the same number of iterations and equal objective values
and solution vectors.

As we do not compute lower bounds in this chapter, we compare the solutions with the
best known solutions for the problem instance. In Chapter 4 we show, that except for
very small area factors, these best known solutions are globally optimal. We sometimes
refer to the best known solution as optimal solution, although for small area factors
it is not proved to be globally optimal.

3.6.1.4 Symmetry Breaking

For 𝑎𝑓 = 0 the problem is rotation symmetric, i.e. rotating all circles by the same
angle does not change the solution. When analyzing the number of local optima, we
want to avoid this symmetry.

The first idea is to rotate all circles, such that the rotation angle of the first circle
is zero. However, it turns out that some circle rotations do not influence some other
rotations, although the circuit is connected. This is due to the fact that some pins
have zero offset, i.e. their position is independent of the circle rotation.

Because of this, the connectivity of the circles is analyzed, and circles that influence
each other are identified. After the algorithm run, the rotations are normalized for
each connectivity group, i.e. the circles of each group are rotated such that the first
circle of each group of connected circles has rotation angle zero. For a detailed analysis
of the symmetry breaking see Section 4.3.

3.6.2 Analyzing the Problem Structure

First we present a numerical evaluation of the problem structure. As we show later,
the algorithms do behave not too differently, so we unified the results of all algorithms
for showing the problem structure. This means, for each problem instance there were
400 optimization runs (each of the 4 algorithms for 100 random start points).

In Figure 3.3 we show for each problem instance the number of discovered local optima,
the ratio of suboptimal solutions found and the ratio of the worst objective divided by
the best objective. Note that the axis of the area factors is a regularized logarithmic
scale (such that 𝑎𝑓 = 0 could be shown).
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3 Circle Rotation Problem

(a) Number of optimal solutions. (b) Ratio of runs yielding suboptimal results.

(c) Worst objective ratio.

Figure 3.3: Structure of the circle rotation problem.

Figure 3.3a shows the number of optimal solutions found during the 400 runs. The
decision, if two solutions are equal, cannot be made based on the objective function
value. So the solution angle vectors were clustered, such that in no cluster the maxi-
mum norm distance of any two solution vectors is greater than 0.01. The number of
clusters then was declared as the number of local optima. Note that the axis of the
local optima is also a logarithmic scale.

Figure 3.3b presents the ratio of suboptimal solutions. Based on the clustering de-
scribed above, the minimal clusters are the clusters which contain a solution with
minimal objective. We then say a solution is optimal if it belongs to such a cluster,
even if, due to numerical issues, the objective value of this solution is slightly worse
than the optimal solution. Subsequently, the number of suboptimal solutions is the
number of solutions not contained in these clusters.

In Figure 3.3c the ratio of the worst solution divided by the best solution for each
problem instance is shown. This is likely to be (very close to) the ratio between the
worst found solution and the optimal solution.
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3.6 Numerical Results

(a) Small distance. (b) Large distance.

Figure 3.4: Great distance removes the impact of the circle rotation. If the connected
circle is far away, the interval of possible optimal rotations becomes small.

To analyze these results, recall that by Lemma 3.1 the wire length is

wl(𝑧) = 𝑏+ 2ℜ(𝑢𝐻𝑧) + 𝑧𝐻𝐴𝑧,

with 𝑏 := 𝑐𝐻Φ𝑇𝑄Φ𝑐,

𝑢 := Φ𝑇𝑃𝐻𝑄Φ𝑐,

𝐴 := Φ𝑇𝑃𝐻𝑄𝑃Φ.

We recognize that for small area factors the number of local optima is large. In fact,
for 𝑎𝑓 = 0 and a large number of circles, almost every run converged to a different
solution. For a small number of circles the number of local optima for small positive
values of 𝑎𝑓 is larger than for 𝑎𝑓 = 0. This seams plausible, as for small area factors
all circles overlap. However, when the area factor is large, the circles are spread very
far. This means, each circle is connected to other circles far away. The further away
another connected circle is, the less important is its rotation. This is visualized in
Figure 3.4 and can also be seen in the formula for the wire length. The greater the
area factor 𝑎𝑓 is, the larger is the magnitude of the components of 𝑐 and 𝑢 and the
value of 𝑏. However, if the entries of 𝑢 are large compared to the entries of 𝐴, the
optimal solution is close to the minimum of ℜ(𝑢𝐻𝑧). So the number of local optima
reduces.

The ratio of suboptimal solutions is strongly related to the number of local optima.
This seems obvious, as if there are more local optima, the algorithm is more likely to
converge to a non-global optimum.

Quality of the Worst Local Optimum

Very interesting is the ratio of the worst objective divided by the best objective shown
in Figure 3.3c. For small area factors, especially for 𝑎𝑓 = 0, there are many local op-
tima, but the objective values of these local optima are very close to the best objective
value found. This can be seen in more detail in Figure 3.5. Also for large area factors,
this quotient is either exactly one (if only one local optimal solution was found) or
close to one, i.e. the non-global optima were almost as good as the best found solution.
However, for area factors close to 𝑎𝑓 = 0.005 this ratio becomes up to 1.13. While the
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exact value of this ratio depends on the random circle distribution, the tendency is
the same for all number of circles.

Considering problem instances with large area factor (e.g. greater than 0.1), we observe
that there are few local optima. And if there are local optima, their objective is nearly
as good as the best known solution.

First let us explain this behavior geometrically. As the circles are spread, the optimal
rotation of a circle does not depend heavily on the rotation of its connected circles,
see Figure 3.4. So it is likely that there is no non-global local optimum. However, even
if there is a non-global optimum, comparing the solutions revealed that most of the
circle rotations are almost equal. In fact, there are only few circles that have a very
different rotation from the global optimum. This means, a small subgroup of circles is
rotated poorly while most of the circles are rotated nearly optimal. However, then the
impact of the poorly rotated circles on the total objective is small.

This can also be seen by looking at the wire length function. The greater the area
factor is, the larger become the entries of 𝑐 and thus the larger becomes the value 𝑏.
However, the entries of 𝐴 do not change at all, while the entries of 𝑢 do not increase as
fast as 𝑏. So the constant part of the wire length is dominating, e.g. the total impact
of the rotation is less than for smaller area factors. This explains the small values in
Figure 3.3c even if there are local optima.

Now consider problem instances with small area factor (e.g. smaller than 0.002). There
are many local optima, but their objective value is almost equal. Further analysis of the
local optimal solution shows that for different local optimal solutions most of the circle
rotations are almost equal. Only some rotations are considerably different. However,
their impact on the total wire length is small.

Finally, we look at instances with area factor in between, e.g. 𝑎𝑓 = 0.005. There are
some local optima and the worst of them is significantly worse than the best solution.
Analyzing different optima shows that many rotations are considerable different. It
seems that the diversification of the centers has enough impact such that bad rotations
significantly influence other circle rotations. But the impact is too small to completely
determine most of the circle rotations. Furthermore, the constant part of the wire
length is not large enough to absorb the impact of bad circle rotations.

3.6.3 Algorithm Comparison

Objective Values

First, in Figure 3.5 we compare the results of the algorithms. For all problem instances
the objectives were divided by the best objective value found by any of the algorithms.
On the 𝑦-axis, this ratio is shown. On the 𝑥-axis, the percentage of runs is stated. So
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if at 75% for an algorithm the graph shows a value of 1.1 this means that in 75% of
the runs the algorithm is better then 1.1 times the best known solution.

Again we recognize the pattern described in Section 3.6.2. The algorithms tend to find
suboptimal solutions more often for small area factors, but the objective value of the
suboptimal solution is worst for 𝑎𝑓 = 0.005. Note that there are suboptimal solutions
not visible in Figure 3.5, as there objective is too close to the best known objective.

In most cases (except 𝑎𝑓 = 0) the star algorithm is slightly inferior to the other
algorithms, which are very close to each other. Also the block coordinate descent
method seems to be slightly worse than Euclid and star algorithm for 𝑎𝑓 > 0. However,
all algorithms find optimal or close-to-optimal solutions very often.

CPU Time and Number of Iterations

We now consider the running time and the number of iterations required by the algo-
rithms to converge to a local optimum.

While for the angle, Euclid and star algorithm the definition of an iteration is obvi-
ous, this is more complicated for the block coordinate descent method. We define an
iteration as the step from 𝑥𝑡 to 𝑥𝑡+1 as described in Section 2.6. So in each iteration,
each circle is rotated once. However, the algorithm is stopped, when the improvement
during the last 𝑛 single circle rotations is smaller than some predefined threshold.
This can be in the middle of an iteration. So we define the number of iterations as
the number of single circle rotations divided by the number of circles. This might be
a fractional number.

In Figure 3.7 the median of the number of iterations and the median of the CPU time
in milliseconds are shown for exemplarily chosen area factors. For 𝑎𝑓 > 1 the diagrams
remain similar to 𝑎𝑓 = 1. In Figure 3.6 the median of the number of iterations and
the median of the CPU time in milliseconds are shown with respect to all problem
instances with the specified area factor.

In Figures 3.8 to 3.11 detailed profiles of each of the algorithms are given. For each
algorithm the median CPU time and the median number of iterations are shown as
a diagram over the number of circles and area factors. Furthermore, quantiles for the
CPU time over the number of circles for some area factors are shown. Finally, the
quantiles of the CPU time over the area factor are shown.

We first look at the CPU time in the Figures 3.6 and 3.7. Obviously, the star algorithm
is by far the worst of the four algorithms. Especially note the break in the scale on the
𝑦-axis. Nevertheless, the performance gap to the other algorithms becomes smaller,
as the area factor increases. The best algorithm in terms of CPU time is the block
coordinate descent method, followed by the angle algorithm and the Euclid algorithm.
As expected, the running time of all algorithms increases with the number of circles.
The absolute distance between these algorithms increases with the number of circles,
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Figure 3.5: Objective distribution for different area factors. On the 𝑥-axis the percent-
age of the runs is stated, on the 𝑦-axis the objective ratio between the ratio
of the objective and the best objective is shown.

52



3.6 Numerical Results

but remains approximately equal for different area factors. But this is only the case
as the block coordinate descent method is very fast compared to the other algorithms.
In the Figures 3.9a and 3.9f it can be seen that its running time increases, if the area
factor gets small.

We now consider the number of iterations in the Figures 3.6 and 3.7. For 𝑎𝑓 = 0, the
block coordinate descent method takes many iterations and the number of iterations
increases with the number of circles. All other algorithms need less iterations and the
increase depending on the number of circles is smaller. The Euclid algorithm requires
more iterations than the angle algorithm, which requires more iterations than the
star algorithm. For greater area factors, the behavior of the block coordinate descent
method changes: For 𝑎𝑓 = 0.002 BCD requires less iterations, but the number of iter-
ations is very volatile. The number of iterations of the other algorithms are similar to
the case 𝑎𝑓 = 0, although the gap between angle and star algorithm increases. Finally,
for 𝑎𝑓 = 1 BCD takes by far the fewest iterations, followed by the star algorithm.
Euclid and Angle algorithm require more iterations. Furthermore, their number of it-
erations increases with the number of circles, while this is constant for BCD and the
star algorithm.

Comparing these diagrams, we observe that the iterations of the block coordinate de-
scent method are very fast. Even for 𝑎𝑓 = 0 where the algorithm takes more iterations
than the other algorithms, it is much faster. Conversely, an iteration of the star algo-
rithm is very slow. Even for 𝑎𝑓 = 1 where it requires less than 10 iterations, it takes
much more time to converge than the other algorithms. In fact, the BCD is always
superior to all other algorithms in running time. The angle algorithm seems to be a
pretty good non-linear model, as it is always second fastest after BCD.

In the following paragraphs we have a closer look at the different algorithms.

Consider the star algorithm in Figure 3.8. For small area factors, the CPU time and
the number of iterations is growing approximately linear depending on the number
of circles. For larger area factors the CPU time does not increase that fast. In fact,
in Figure 3.6b it can be seen that the number of iterations remains almost constant.
Hence, the gap to the other algorithms gets smaller for increasing area factors, see Fig-
ure 3.6. The long running time is due to the wire length formula. Especially computing
the Jacobin and Hessian is more expensive for the star wire length model than for the
clique wire length used in the Euclid or angle algorithm. Furthermore, Table 2.1 on
page 28 shows that in particular for small instances the number of nets is significantly
larger than the number of components. Hence, the number of variables in the star
algorithm is larger than the number of variables in the other algorithms.

We now analyze the block coordinate descent method visualized in Figure 3.9. Its
CPU time increase depending on the number of circles is approximately linear. For
larger area factors, the running time dependency on the starting point decreases. So in
Figure 3.9e the difference between the best and the worst running time is very small.
Remarkable is the poor worst case behavior for 𝑎𝑓 = 0 as shown in Figure 3.9c and
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Figure 3.9f. Recall that the block coordinate descent method can jump between local
optima. It is likely that for 𝑎𝑓 = 0, as there are many local optima, the algorithm
jumps very often. However, after such a jump the rotation of the other circles has to
be adapted, thus the algorithm takes longer to converge. As the area factor increases,
the number of local optima decreases, thus such a jump is less likely and the worst
case performance improves.

Now we consider the angle algorithm in Figure 3.10. This algorithm is reasonable fast
and very robust. Its running time grows approximately linearly with the number of
circles for all area factors. Indeed, Figures 3.10a, 3.10b and 3.10f show that neither
running time nor iterations heavily depend on the area factor. Also the difference be-
tween worst case behavior and average or best case behavior is small. The performance
independence of the area factor is a clear difference to the BCD, but can be easily
explained. While the BCD jumps between local optima, the angle algorithm just con-
verges to the “closest” local optimum. It does not jump but behaves continuously. So
it is not influenced by possibly many other local optima.

Finally, look at the Euclid algorithm in Figure 3.11. This algorithm is similar to
the angle algorithm. Its objective is a quadratic form, however it includes one non-
linear equality constraint per circle. For most of the cases it behaves similar to the
angle algorithm. However, sometimes it has convergence problems and takes orders of
magnitude more time to converge. In such runs the algorithm does not make progress
for 10000 iterations ore more, until it suddenly converges again. Although we cannot
really explain this behavior, it seems to be some artificial behavior of Ipopt. However,
also for cases where the algorithm converges normally, it is slower and takes more
iteration than the angle algorithm.
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Figure 3.6: Median of CPU time and number of iterations. In both graphs on the 𝑥-
axis the area factor is stated. In (a) on the 𝑦-axis the median of the CPU
time in milliseconds for one run is stated. Note that the scale of the 𝑦-axis
changes for 300ms. The median is taken over all number of circles, as the
basic behavior remains approximately equal for all number of circles. In
(b) on the 𝑦-axis the median number of iterations is shown.

3.6.4 Conclusion

In this section we analyzed the local algorithms for the circle rotation problem numer-
ically. We showed that the solution quality of all algorithms is similar and that the
local algorithms yield close to optimal solutions in most cases.

For instances with small area factors, the algorithms rarely reach the global optimum
exactly, however all local optimal objective values are close to the best known objective.
For large area factors, the algorithms always find the optimal solution.

In terms of running time, the block coordinate descent method outperforms the other
algorithms by orders of magnitudes. The best formulation to be used in non-linear
programs is the angle rotation, as it is significantly better than the Euclidean rotation.
The star model is substantially worse than all other models.
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Figure 3.7: Median of CPU time and number of iterations. On the 𝑥-axis the number of
circles is stated. On the 𝑦-axis the median of the CPU time in milliseconds
for one run is stated. Note that the scale of the 𝑦-axis changes in (a) to
(c) at 1000ms. These plots are chosen examples for the typical behavior,
for 𝑎𝑓 > 1 they remain similar to 𝑎𝑓 = 1.
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Star Algorithm
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Figure 3.8: Performance profile of the star algorithm. In (c), (d) and (e) on the 𝑥-axis
the number of circles is stated. In (f) on the 𝑥-axis the area factor is shown.
On the 𝑦-axis the quantiles of the CPU time in milliseconds are stated.
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Block Coordinate Descend Method

(a) CPU(ms) / #circles. (b) Iteration / #circles.

0

10

20

30

40

50

60

70

80

300 600 900 1200

(c) CPU(ms) / #circles, 𝑎𝑓 = 0.

0

3

6

9

12

300 600 900 1200

(d) CPU(ms) / #circles, 𝑎𝑓 = 0.002.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 600 900 1200

(e) CPU(ms) / #circles, 𝑎𝑓 = 1.

0

5

10

15

20

25
50
75

10−3 10−2 10−1 100 101

(f) CPU(ms) / 𝑎𝑓 .

max quart(0.75) median quart(0.25) min

Figure 3.9: Performance profile of the block coordinate descent method. In (c), (d)
and (e) on the 𝑥-axis the number of circles is stated. In (f) on the 𝑥-axis
the area factor is shown. On the 𝑦-axis the quantiles of the CPU time in
milliseconds are stated. Note the scale of the 𝑦-axis changes at 25 in (f).
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Angle Algorithm
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Figure 3.10: Performance profile of the angle algorithm. In (c), (d) and (e) on the 𝑥-
axis the number of circles is stated. In (f) on the 𝑥-axis the area factor is
shown. On the 𝑦-axis the quantiles of the CPU time in milliseconds are
stated.
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Euclid Algorithm
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Figure 3.11: Performance profile of the Euclid algorithm. In (c), (d) and (e) on the
𝑥-axis the number of circles is stated. In (f) on the 𝑥-axis the area factor
is shown. On the 𝑦-axis the quantiles of the CPU time in milliseconds are
stated. Note the break of the 𝑦-axis-scale in (d), (e) and (f).
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4 Global Optimization of the Circle
Rotation Problem

In this chapter we consider global solution algorithms for the circle rotation problem
stated in Chapter 3. For a set of fixed centered connected circles, the circles have to
be rotated such that the wire length is minimized.

Semidefinite programming approaches for the Hermitian minimization problem equiv-
alent to the circle rotation problem have been studied in the literature. We proposed
and analyzed local optimization algorithms for the circle rotation problem in Chap-
ter 3. However, we have not presented an algorithm to solve this problem to global
optimality.

In Section 4.1 we reformulate the wire length minimization problem as Hermitian
minimization problem. Furthermore, we show that it is also equivalent to an indefinite
quadratic optimization problem on a convex domain. We survey solution methods
known in the literature for this problem.

In Section 4.2 we introduce a branch and bound algorithm for the circle rotation
problem. In the remaining part of the chapter, the main elements of this algorithm
are explained and analyzed. In Section 4.3 we explain symmetry breaking techniques
to reduce the number of branches. In Section 4.4 we state the branching schemes used
within the algorithm.

Based on computational geometry, we develop a novel domain reduction algorithm in
Section 4.5. This algorithm reduces the number of branches that correspond to areas
not containing an optimal solution.

In Section 4.6 and Section 4.7 we show how to compute the lower and upper bounds
efficiently by the block coordinate descent method. For the lower bound evaluation,
we prove that the Lagrange multipliers of the subproblems of the block coordinate
descent method converge to the Lagrange multipliers of the global optimum.

In a detailed analysis in Section 4.8 we show that our branch and bound algorithm
efficiently solves practical problem instances to global optimality. In particular, we
show that our domain reduction algorithm often assures global optimality without
branching and improves the running time of the algorithm by orders of magnitudes.
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4.1 Quadratic Optimization Problem

We know by Theorem 3.6 that minimizing the wire length in the clique model is
equivalent to computing min{𝑧𝐻𝐻𝑧 : 𝑧 ∈ 𝜕𝒰𝑛} with some positive semidefinite
Hermitian matrix 𝐻 ∈ C𝑛×𝑛 and 𝜕𝒰 = {𝑧 ∈ C : |𝑧| = 1} as defined in Definition 2.6.
Define

𝑓(𝑧) = 𝑧𝐻𝐻𝑧 =
∑︁
𝑖,𝑗

ℎ𝑖𝑗𝑧𝑖𝑧.

Definition 4.1. We define 𝑓𝑘 as the function 𝑓 in the variable 𝑧𝑘, when all other
variables are fixed. With 𝜋𝑘(𝑧) = (𝑧1, . . . , 𝑧𝑘−1, 𝑧𝑘+1, . . . , 𝑧𝑛)𝑇 as in Definition 2.5 we
get

𝑓𝑘(·, 𝜋𝑘(𝑧)) : C→ R, 𝑓𝑘(𝜉, 𝜋𝑘(𝑧)) = 𝑓(𝑧1, . . . , 𝑧𝑘−1, 𝜉, 𝑧𝑘+1, . . . , 𝑧𝑛).

As 𝑓(𝑧) = Ψ[𝐻, 0, 0] with Φ from Definition 2.20 by Lemma 2.22 it is

𝑓𝑘(·, 𝜋𝑘(𝑧)) = 𝜓

⎡⎣ℎ𝑘𝑘,
∑︁
𝑗 ̸=𝑘

ℎ𝑘𝑗𝑧𝑗,
∑︁

𝑖,𝑗 ̸=𝑘

ℎ𝑖𝑗𝑧𝑖𝑧𝑗

⎤⎦ . (4.1)

4.1.1 Formulation as Indefinite Quadratic Optimization Problem

Recall that CR from Definition 3.2 denotes the circle rotation problem and HM
from Definition 3.3 denotes the problem with positive semidefinite matrix 𝐻 to find
min𝑧∈𝜕𝒰 𝑧𝐻𝐻𝑧. By Theorem 3.6 we have shown that these problems are essentially
equivalent, i.e. equivalent up to a constant. We now construct another formulation
that can be used to solve HM or CR.

4.1.2 Problem Reformulation

Definition 4.2 (Indefinite Hermitian Minimization (IHM)). The indefinite Hermitian
minimization problem IHM is: For a (possibly indefinite) Hermitian matrix 𝐻 find
min𝑧∈𝒰𝑛 𝑧𝐻𝐻𝑧.

In contrast to HM, here the objective function is not necessarily convex while the
domain is convex. We now show that IHM and HM are essentially equivalent.

Theorem 4.3. Let 𝐻 ∈ C𝑛×𝑛 be a Hermitian matrix with zero diagonal entries. Then
there is a global minimizer 𝑧* of 𝑓(𝑧) = 𝑧𝐻𝐻𝑧 in 𝒰𝑛 with |𝑧*

𝑖 | = 1, 𝑖 = 1, . . . , 𝑛.
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Proof. For a feasible solution 𝑧 ∈ 𝒰𝑛 set 𝐽(𝑧) = {𝑗 : |𝑧𝑗| < 1}. Let 𝑧̃ be a global
minimizer of 𝑓 with minimal number of elements in 𝐽(𝑧̃). If 𝐽(𝑧̃) = ∅ we are done, as
then 𝑧* = 𝑧̃ satisfies the statement.

Otherwise let 𝑘 ∈ 𝐽(𝑧̃), i.e. |𝑧𝑘| < 1. Consider the other values of 𝑧̃ being fixed. Then
𝑓𝑘(𝜉, 𝜋𝑘(𝑧̃)) = 𝜓[0, 𝑢, 𝑏](𝜉) = 2ℜ(𝜉𝑢) + 𝑏 with

𝑢 =
∑︁
𝑗 ̸=𝑘

ℎ𝑘𝑗𝑧𝑗, 𝑏 =
∑︁

𝑖,𝑗 ̸=𝑘

ℎ𝑖𝑗𝑧𝑗𝑧𝑗.

Denote the minimum of 𝑓 by 𝑓 * and the minimum of 𝑓𝑘(·, 𝜋𝑘(𝑧)) by 𝑓 *
𝑘 . Then 𝑓 * ≤

𝑓 *
𝑘 and 𝑧𝑘 is a minimizer of 𝑓𝑘(·, 𝜋𝑘(𝑧̃)) as 𝑓𝑘(𝑧𝑘, 𝜋𝑘(𝑧̃)) = 𝑓(𝑧̃) = 𝑓 *. By Lemma

2.18 in the case 𝑎 = 0 a minimizer of 𝑓𝑘(·, 𝜋𝑘(𝑧̃)) is either arbitrary (if 𝑢 = 0) or
−Normed [𝑢], especially there is a minimizer 𝑧′

𝑘 of 𝑓𝑘(·, 𝜋𝑘(𝑧̃)) with |𝑧′
𝑘| = 1. Set

𝑧̃′ = (𝑧1, . . . , 𝑧𝑘−1, 𝑧
′
𝑘, 𝑧𝑘+1, . . . , 𝑧𝑛)𝑇 . Then

𝑓 * ≤ 𝑓(𝑧̃′) = 𝑓𝑘(𝑧′
𝑘, 𝜋𝑘(𝑧̃)) ≤ 𝑓𝑘(𝑧𝑘, 𝜋𝑘(𝑧̃)) = 𝑓(𝑧̃) = 𝑓 *.

Thus equality holds and 𝑧̃′ is a global minimizer of 𝑓 with 𝐽(𝑧̃′) < 𝐽(𝑧̃). Contradiction.

Theorem 4.4. Let 𝐻 ∈ C𝑛×𝑛 be a Hermitian matrix and 𝐷 = diag(𝑑1, . . . , 𝑑𝑛) ∈ R𝑛×𝑛

a diagonal matrix. Then for 𝑧 ∈ 𝜕𝒰𝑛

𝑧𝐻(𝐻 +𝐷)𝑧 = 𝑧𝐻𝐻𝑧 + trace(𝐷)

Proof. Simple calculation yields

𝑧𝐻(𝐻 +𝐷)𝑧 =
𝑛∑︁

𝑖,𝑗=1
ℎ𝑖𝑗𝑧𝑖𝑧𝑗 +

𝑛∑︁
𝑖=1

𝑑𝑖𝑧𝑖𝑧𝑖

=
𝑛∑︁

𝑖,𝑗=1
ℎ𝑖𝑗𝑧𝑖𝑧𝑗 +

𝑛∑︁
𝑖=1

𝑑𝑖 = 𝑧𝐻𝐻𝑧 + trace(𝐷).

Corollary 4.5 (The problem HM can be formulated as IHM up to a constant). Let
𝐻 be a positive semidefinite Hermitian matrix. Let 𝐻 ′ = 𝐻−diag(ℎ11, . . . , ℎ𝑛𝑛) be the
matrix 𝐻 with erased diagonal. Then

min
𝑧∈𝜕𝒰𝑛

𝑧𝐻𝐻𝑧 = min
𝑧∈𝒰𝑛

𝑧𝐻𝐻 ′𝑧 + trace(𝐻)

and there is a common minimizer.
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Proof. By Theorem 4.3 there is a global minimizer 𝑧* ∈ argmin𝑧∈𝒰𝑛 𝑧𝐻𝐻 ′𝑧 with
𝑧* ∈ 𝜕𝒰𝑛. Especially

𝑧* ∈ argmin
𝑧∈𝜕𝒰𝑛

𝑧𝐻𝐻 ′𝑧 = argmin
𝑧∈𝜕𝒰𝑛

𝑧𝐻𝐻𝑧 + trace(𝐻) = argmin
𝑧∈𝜕𝒰𝑛

𝑧𝐻𝐻𝑧.

So 𝑧* is a common minimizer, and as 𝑧* ∈ 𝜕𝒰𝑛 by Theorem 4.4 we have

min
𝑧∈𝜕𝒰𝑛

𝑧𝐻𝐻𝑧 = (𝑧*)𝐻𝐻𝑧* = (𝑧*)𝐻𝐻 ′𝑧* + trace(𝐻) = min
𝑧∈𝒰𝑛

𝑧𝐻𝐻 ′𝑧 + trace(𝐻).

4.1.3 Literature Survey

All quadratic programming problems are problems where the objective and all equality
and inequality constraints are linear or quadratic. So both HM and IHM are quadratic
problems. However, IHM has the special structure that only the objective is non-
convex while all constraints are convex. Both types of problems have been studied in
literature. For a survey of general quadratic programming problems see [Thoai 2005],
for problems with convex constraints see e.g. [Nowak 2000].

Almost all solution approaches are based on the following concepts: outer approxima-
tion, branch and bound or a combination of both.

We first explain the outer approximation concept. Consider the problem to minimize
a concave function 𝑓 over the domain 𝐶. Denote the minimizer by 𝑥*. The outer
approximation technique constructs a sequence 𝐶𝑖 of sets such that 𝐶1 ⊃ 𝐶2 ⊃ · · · ⊃
𝐶. The sets are constructed in such a way that 𝑓 can be minimized over the domain 𝐶𝑖,
denote the respective minimizer by 𝑥*

𝑖 . Then 𝑓(𝑥*
𝑖 ) ≤ 𝑓(𝑥*) for all 𝑖 and the algorithm

converges if 𝑥*
𝑖 → 𝑥* is guaranteed for 𝑖→∞. Furthermore, the algorithm stops when

𝑥*
𝑖 ∈ 𝐶 for some 𝑖.

The branch and bound approach can be applied to minimize a function 𝑓 over a
compact set 𝐶. There in the 𝑖-th step the domain 𝐶 is partitioned into sets 𝐶𝑖1 , . . . , 𝐶𝑖𝑘𝑖

.
For each of these sets an upper and a lower bound for the best possible value is
computed. Sets with a lower bound greater than the best found upper bound can be
removed, as they can never contain the global minimum. This procedure is repeatedly
applied. The algorithm converges if eventually the bounds converges to the optimal
value.

However, these general algorithms are only practically usable if they can exploit some
special structure of the problem. The requirement that all constraints are convex is
an example of such a structure. In [Nowak 2000] a branch and cut algorithm for this
type of problems is described. We present a more problem adapted branch and bound
algorithm in the remaining part of this chapter.
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4.2 Custom Branch and Bound

In this section we consider functions of the type 𝑓(𝑧) = 𝑧𝐻𝐻𝑧 for a positive definite
matrix 𝐻. If 𝐻 is only positive semidefinite, by Theorem 4.4 we can replace it by a
positive definite matrix 𝐻+𝐷 where 𝐷 is a diagonal matrix with non-negative entries.
This substitution does not affect the optimal solution point.

We now describe the branch and bound algorithm. Some details are postponed and
explained later in this chapter.

Definition 4.6 (Partition Sets). A partition is a set 𝒬 = {𝑍1, . . . , 𝑍𝑚} of sets such
that int(𝑍𝑖)∩int(𝑍𝑗) = ∅ for all 𝑖 ̸= 𝑗. It is called a partition of Ω, if 𝑍1∪· · ·∪𝑍𝑚 = Ω.
The sets 𝑍𝑖 are called partition sets.

Definition 4.7 (Branching). A branching on a partition 𝒬 = {𝑍1, . . . , 𝑍𝑚} is a
subdivision of one partition set 𝑍𝑘, i.e. it defines a new partition

𝒬′ = {𝑍1, . . . , 𝑍𝑘−1, 𝑍𝑘,1, . . . , 𝑍𝑘,𝑙, 𝑍𝑘+1, . . . , 𝑍𝑚}

where 𝑍𝑘,1, . . . , 𝑍𝑘,𝑙 is a partition of 𝑍𝑘.

Definition 4.8 (Optimal Value, Bounds). The optimal value of 𝑓 on a set 𝑍 is denoted
by 𝑓 *(𝑍) = min{𝑓(𝑧) : 𝑧 ∈ 𝑍}. In particular, we define 𝑓 *(∅) = ∞. A lower bound
function 𝑙𝑏 is a function such that 𝑙𝑏(𝑍) ≤ 𝑓 *(𝑍) for all set 𝑍. Similar an upper bound
function 𝑢𝑏 is a function such that 𝑢𝑏(𝑍) ≥ 𝑓 *(𝑍) for all sets 𝑍.

Note that the upper bound 𝑢𝑏(𝑍) is not an upper bound for the function 𝑓 on 𝑍, but
for the minimal value 𝑓 *(𝑍) of 𝑓 on 𝑍.

Definition 4.9 (Domain Reduction). A domain reduction 𝑃 constructs a domain set
𝑃 (𝑍) from a domain set 𝑍 such that 𝑃 (𝑍) ⊂ 𝑍 and a global minimizer 𝑧* ∈ 𝑍 is
contained in 𝑃 (𝑍).

It might happen that 𝑃 (𝑍) = ∅. Then 𝑍 does not contain any global optimal solu-
tion.

Definition 4.10 (Impact). The impact of a variable 𝑧𝑘 on the objective 𝑓 is

𝛾𝑘 = sup
{︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜕𝑓(𝑧)
𝜕𝑧𝑘

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ : 𝑧 ∈ 𝜕𝒰

}︃
.

Lemma 4.11. The impact in the circle rotation problem is

𝛾𝑘 =
𝑛∑︁

𝑗=1
|ℎ𝑘𝑗| .
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4 Global Optimization of the Circle Rotation Problem

Proof. We compute by (4.1) for 𝑧 ∈ 𝜕𝒰
⃒⃒⃒⃒
⃒𝜕𝑓(𝑧)
𝜕𝑧𝑘

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒∑︁
𝑗 ̸=𝑘

ℎ𝑘𝑗𝑧𝑗 + |ℎ𝑘𝑘| 𝑧𝑘

⃒⃒⃒⃒
⃒⃒ ≤ 𝑛∑︁

𝑗=1
|ℎ𝑘𝑗| |𝑧𝑗| =

𝑛∑︁
𝑗=1
|ℎ𝑘𝑗| ,

where equality holds for some 𝑧 ∈ 𝜕𝒰 .

Definition 4.12 (Angle Size). Let be 𝑍 ⊂ 𝜕𝒰 . The angle size of 𝑍 is defined by

𝜌(𝑍) = inf{𝛽 − 𝛼 : 𝑍 ⊂ exp(𝚤[𝛼, 𝛽]), 𝛼 ≤ 𝛽}.

Intuitively, 𝜌(𝑍) is the size of the smallest angle containing 𝑍.

In the circle rotation problem, the initial domain is 𝜕𝒰𝑛, so all partition sets have
the form 𝑍 = 𝑍1 × · · · × 𝑍𝑛 ⊂ 𝜕𝒰𝑛. We call such partition sets domain sets. In the
following algorithm all domain sets 𝑍 are connected, i.e. the domain 𝑍𝑘 always is a
unit circle arc.

Algorithm 1: Circle rotation branch and bound.
Data: Target Approximation Quality 𝜀 > 0

1 𝑍 ← 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦_𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔(𝜕𝒰𝑛);
2 𝑍 ← 𝑑𝑜𝑚𝑎𝑖𝑛𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑍);
3 𝑙𝑏* ← 𝑙𝑏(𝑍);
4 𝑢𝑏* ← 𝑢𝑏(𝑍);
5 𝒬 ← {𝑍};
6 while 𝑢𝑏* > 𝑙𝑏* · (1 + 𝜀) do
7 take 𝑍 ∈ 𝒬;
8 divide 𝑍 into {𝑍𝑗, 𝑗 ∈ 𝐽};
9 𝒬 ← 𝒬 ∖ {𝑍} ∪ {𝑑𝑜𝑚𝑎𝑖𝑛𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑍𝑗) : 𝑗 ∈ 𝐽};

10 𝑙𝑏* ← max{𝑙𝑏(𝑍) : 𝑍 ∈ 𝒬};
11 𝑢𝑏* ← min{𝑢𝑏(𝑍) : 𝑍 ∈ 𝒬};
12 return 𝑍 ∈ 𝒬 with minimal 𝑢𝑏(𝑍);

The branch and bound procedure for the circle rotation problem is shown in Algo-
rithm 1. As 𝑓 is a positive definite Hermitian form, the optimal value is strictly positive.
Below we explain the essential parts of the algorithm.

∙ The symmetry breaking of 𝜕𝒰𝑛 is done in line 1. As 𝑓(𝑧) = 𝑓(𝛼𝑧), for each 𝛼
with |𝛼| = 1 there is a continuum of optimal solutions. This symmetry can be
broken by fixing one or more variables to 1. It is obvious that one variable can
be fixed, but in some cases more than one variable can be fixed to 1. This is
described in Section 4.3.
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4.3 Symmetry Breaking

∙ The lower bound evaluation function 𝑙𝑏(𝑍) in line 3 and line 10 is defined as
𝑙𝑏(𝑍) := min{𝑓(𝑧) : 𝑧 ∈ conv(𝑍)}, where conv(𝑍) denotes the convex hull of 𝑍.
As this is a convex optimization problem, it can be evaluated by any standard
non-linear solver. However, in Section 4.6 we show how to compute the lower
bound more efficiently by the block coordinate descent method.

∙ For the upper bound evaluation function 𝑢𝑏(𝑍) in line 4 and line 11, any feasible
solution value 𝑓(𝑧) with 𝑧 ∈ 𝑍 would suffice. However, the quality of the upper
bound is crucial, so we solve the non-convex problem to minimize 𝑓(𝑧) for 𝑧 ∈ 𝑍
to a local minimum and set the solution to be 𝑢𝑏(𝑍). Depending on the starting
point, several solutions can occur. To make this function well defined, we have
to specify a starting point and the concrete optimization algorithm. Similar to
the lower bound this might be solved by any non-linear solver but can be done
more efficiently by the block coordinate descent method. Details are presented
in Section 4.7.

∙ Line 7 comprises the choice of the element 𝑍 ∈ 𝒬 to branch on. We observe that
in the circle rotation problem usually the upper bound is close to optimal very
early, and hence most of the time is spent by improving the lower bound. So we
choose 𝑍 ∈ {𝑍 ∈ 𝒬 : 𝑙𝑏(𝑍) minimal}.

∙ In line 8 the branching on 𝑍 is performed by dividing it to subdomains {𝑍𝑗, 𝑗 ∈
𝐽}. There are many possible branching heuristics. We only consider branching on
single rotations. This means, we always take the domain 𝑍𝑘 ⊂ 𝜕𝒰 of a variable
𝑧𝑘 and divide this one-dimensional domain into subdomains. The details are
described in Section 4.4.

∙ In line 2 and line 9 the domain reduction algorithm 𝑃 is applied. By Definition 4.9
this algorithm removes parts of the set 𝑍 that cannot contain a global minimizer.
The domain reduction is one very important part in the branch and bound
algorithm, as it can cut off regions of the feasible domain and, hence, reduces
the number of branches. The algorithm is described in Section 4.5.

4.3 Symmetry Breaking

As 𝑓(𝑧) = 𝑓(𝛼𝑧) for each 𝛼 with |𝛼| = 1 there is a global minimizer with 𝑧𝑛 = 1. We
could take a minimizer 𝑧*, then 𝑧′ = 𝑧*/𝑧*

𝑛 is also a minimizer with 𝑧′
𝑛 = 1. So for

symmetry breaking we can fix one variable to 1.

However, there might still be rotation symmetry. Consider a matrix implied by an
electronic circuit that is not connected, with circle centers in the origin. This matrix
can be reordered, such that it is block diagonal. In such cases, for each block a variable
can be fixed. We now formalize this idea.
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Definition 4.13. A 𝑘-block diagonal matrix is a matrix 𝐴 of the following form

𝐴 =

⎛⎜⎜⎜⎜⎝
𝐴1 0 . . . 0
0 𝐴2 . . . 0
... ... . . . ...
0 0 . . . 𝐴𝑘

⎞⎟⎟⎟⎟⎠ with 𝐴𝑗 ∈ C𝑛𝑗×𝑛𝑗 .

Definition 4.14. A Hermitian matrix 𝐴 ∈ C𝑛×𝑛 is called 𝑘-reducible if there is a
permutation matrix 𝑄 such that 𝑄𝑇𝐴𝑄 is 𝑘-block diagonal.

All elements mapped into the same matrix block by the permutation 𝑄 are called a
partition.

Note that every matrix is a 1-block diagonal matrix and thus is 1-reducible. Sometimes
a matrix is called block diagonal if it is at least 2-block diagonal. Similar it is called
reducible if it is at least 2-reducible.

We now show that for a 𝑘-reducible matrix 𝐻 we can fix 𝑘 variables to 1.

Lemma 4.15. Let 𝐻 be 𝑘-reducible. Let 𝑗𝑖 be an element of partition 𝑖, 𝑖 = 1, . . . , 𝑘.
Then there is a minimum of 𝑓(𝑧) = 𝑧𝐻𝐻𝑧 over 𝜕𝒰 with 𝑧𝑗𝑖

= 1 for 𝑖 = 1, . . . , 𝑘.

Proof. W.l.o.g. by permutation we can assume that 𝐻 is block diagonal, i.e. 𝐻 =
diag(𝐻1, . . . , 𝐻𝑘) with 𝐻𝑗 ∈ C𝑛𝑗×𝑛𝑗 . Set 𝑧 = (𝑧1, . . . ,𝑧𝑘), where 𝑧𝑗 is the vector of
entries of 𝑧 corresponding to block 𝐻𝑗. Then we have

𝑓(𝑧) =
(︁
(𝑧1)𝐻 , . . . , (𝑧𝑘)𝐻

)︁⎛⎜⎜⎝
𝐻1 . . . 0
... . . . ...
0 . . . 𝐻𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑧1

...
𝑧𝑛

⎞⎟⎟⎠ =
𝑘∑︁

𝑗=1
(𝑧𝑗)𝐻𝐻𝑗𝑧

𝑗.

Let now 𝑧 = (𝑧1, . . . ,𝑧𝑘) ∈ 𝜕𝒰𝑛 be an optimal solution. Set 𝑤 = (𝑤1, . . . ,𝑤𝑘) with
𝑤𝑗 = 𝑧𝑗/𝑧𝑗

1 where 𝑧𝑗
1 denotes the first element of 𝑧𝑗. Then

𝑓(𝑤) =
𝑘∑︁

𝑗=1
(𝑤𝑗)𝐻𝐻𝑗𝑤

𝑗 =
𝑘∑︁

𝑗=1

1⃒⃒⃒
𝑧𝑗

1

⃒⃒⃒2 (𝑧𝑗)𝐻𝐻𝑗𝑧
𝑗 =

𝑘∑︁
𝑗=1

(𝑧𝑗)𝐻𝐻𝑗𝑧
𝑗 = 𝑓(𝑧).

Especially for a 𝑘-reducible matrix one variable per block can be fixed to 1. As the
influence of variable 𝑧𝑘 on the objective is related to the impact 𝛾𝑘, for each block we
fix the variable 𝑧𝑘 with maximal impact 𝛾𝑘.
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4.4 Branching Schemes

We only consider branching on single variables. In a first step we choose a variable to
branch on, in the second step we split the domain of the variable into subdomains.

4.4.1 Variable Selection

The first step is the selection of a variable to branch on. Denote by 𝑍 = (𝑍1, . . . , 𝑍𝑛)
the domain set to branch. A common heuristic is to make the most important decisions
first. As the hardest part of the circle rotation problem is to increase the lower bound,
the branching scheme should select a variable whose restriction increases the lower
bound as much as possible.

According to these heuristics, we now state properties of rotations 𝑧𝑘 that make them
desirable to branch on. Recall that 𝑙𝑏(𝑍) = min

{︁
𝑓(𝑧) : 𝑧 ∈ conv𝑍

}︁
and denote by 𝑧𝑙𝑏

a solution where the minimum is attained. Note that 𝑧𝑙𝑏 ∈ 𝒰𝑛 but usually 𝑧𝑙𝑏 /∈ 𝜕𝒰𝑛.

∙ A variable 𝑧𝑘 with great impact 𝛾𝑘 on the objective should be preferred (see
Definition 4.10).

∙ A variable 𝑧𝑘 should be preferred for branching if it has a great degree of freedom,
i.e. the angle size 𝜌(𝑍𝑘) is maximal. This is motivated by the observation that
dividing a big domain into smaller ones is a bigger restriction than dividing an
already small domain into the same number of even smaller ones.

∙ A variable 𝑧𝑘 should be preferred for branching, if
⃒⃒⃒
𝑧𝑙𝑏

𝑘

⃒⃒⃒
is small. If

⃒⃒⃒
𝑧𝑙𝑏

𝑘

⃒⃒⃒
is close to

1, it is unlikely that a restriction of 𝑍𝑘 increases the lower bound significantly.
However, if 𝑧𝑙𝑏

𝑘 is close to zero, a restriction of 𝑍𝑘 restricts conv(𝑍𝑘) such that
𝑧𝑙𝑏

𝑘 is infeasible for the lower bound problem subject to the restricted domain.
So 𝑧𝑙𝑏

𝑘 is pushed to the boundary and consequently the lower bound improves.

The heuristic chooses the variable to branch on according to the aspects described
above. The variable 𝑧𝑘 selected for branching is chosen by

𝑘 ∈ argmax
𝑗=1,...,𝑛

𝛾𝑗 · 𝜌(𝑍𝑗) ·
(︁
1−

⃒⃒⃒
𝑧𝑙𝑏

𝑗

⃒⃒⃒)︁
.

Then 𝑍𝑘 is divided into subsets 𝑍𝑗
𝑘, 𝑗 ∈ 𝐽 . Thus we partition 𝑍 into{︁

𝑍1 × · · · × 𝑍𝑘−1 × 𝑍𝑗
𝑘 × 𝑍𝑘+1 × · · · × 𝑍𝑛 ⊂ 𝜕𝒰𝑛 : 𝑗 ∈ 𝐽

}︁
There is still freedom how to choose 𝑍𝑗

𝑘, 𝑗 ∈ 𝐽 . This is described in the next section.
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4.4.2 Branching on the Selected Element

We now assume that a variable 𝑧𝑘 to branch on has been selected. The set before
branching is 𝑍𝑘 and we want to subdivide it into sets 𝑍𝑗

𝑘, 𝑗 ∈ 𝐽 . As in the previous
section, denote by 𝑧𝑙𝑏

𝑘 ∈ 𝒰 the 𝑘-th variable of the solution, for which the lower bound
value is attained. By the branching there are several things to be achieved:

∙ The lower bound should be increased. This means the region containing 𝑧𝑙𝑏
𝑘

should be cut of.

∙ The number of remaining branches should be kept small. This can be done by
either generating few sets 𝑍𝑗

𝑘, 𝑗 ∈ 𝐽 or by ensuring that these sets can be removed
by domain reduction as their lower bound is too large.

However, these goals are contradictory. Dividing the set 𝑍𝑘 into many smaller arcs, cuts
of 𝑧𝑙𝑏

𝑘 and the new lower bound solutions are closer to the circle boundary. However,
many branches have to be considered in the algorithm.

Even if the number of partition sets is fixed, there are different ways to generate these
branches. For example, for three partition sets Figure 4.1 shows two alternatives with
different focus. In Figure 4.1a the branching is done in a way such that two branches
have a large distance to the current lower bound solution. So it is likely that they are
dropped as their lower bound is too large. However, for one partition set the lower
bound 𝑧𝑙𝑏

𝑘 remains feasible, especially the lower bound is not improved. In contrast in
Figure 4.1b the lower bound is guaranteed to be improved, therefore it is likely that
two branches remain in the algorithm, as their lower bound is not large enough to be
skipped.

There are the same considerations if we have to subdivide a proper circular arc 𝑍𝑘 (
𝜕𝒰 . However, there the boundary of the outer arcs in the subdivision is fixed and we
divide this arc into equidistant parts.

4.5 Domain Reduction Algorithm

The domain reduction algorithm is of particular importance within the branch and
bound scheme. It drops parts of the domain that are guaranteed not to contain the
global minimum. There is a trade-off for domain reduction. Of course, the domain re-
duction algorithm costs time in each branching node. However, it avoids the algorithm
from branching in the skipped region and thus reduces the number of branches.

We propose a domain reduction algorithm based on computational geometry. The
concepts and algorithms required for our domain reduction are introduced in Sec-
tion 4.5.1.
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4.5 Domain Reduction Algorithm

(a) Domain reducing
branch.

(b) Lower bound im-
proving branch.

Figure 4.1: Different possibilities to divide 𝜕𝒰 into three partition sets. The point
marks 𝑧𝑙𝑏

𝑘 and the unit circle is the initial domain of 𝑧𝑙𝑏
𝑘 . By branching

the domain is separated into three parts. The white circle segments are
parts with probably small lower bound while the light gray parts are likely
to have a larger lower bound. The dark gray triangle is not contained in
the domain of 𝑧𝑙𝑏

𝑘 for any of the branches. In (a) the lower bound is not
improved, however, it is likely that two branches may be skipped by their
lower bound. In (b) the lower bound is improved, but only one branch is
likely to be skipped.

Figure 4.2: Normalization Normed [𝐴] of a set 𝐴.

4.5.1 Geometric Computations

In this section we introduce set computations. While most of the concepts can be
considered in general spaces, we only consider the space C.

Let 𝑎, 𝑏 ∈ C denote elements, 𝐴,𝐵 ⊂ C sets and ℎ a function on C. Then ℎ(𝐴) =
{ℎ(𝑎) : 𝑎 ∈ 𝐴}. Especially the Minkowski sum is 𝐴+𝐵 = {𝑎+ 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, a set
can be rotated by 𝑎𝐵 = {𝑎𝑏 : 𝑏 ∈ 𝐵} and translated by 𝑎+𝐵 = {𝑎+ 𝑏 : 𝑏 ∈ 𝐵}.

Recalling Definition 2.7, the normalization of 𝐴 is Normed [𝐴] = {Normed [𝑎] : 𝑎 ∈
𝐴}. This has also a geometric interpretation visualized in Figure 4.2. Assume 𝐴 to
be a connected set. Let 𝐶𝐴 be the smallest cone in the origin such that 𝐴 ⊂ 𝐶𝐴.
Then Normed [𝐴] is the set of points of the cone 𝐶𝐴 that lie on the unit circle, i.e.
Normed [𝐴] = 𝐶𝐴 ∩ 𝜕𝒰 . In the literature the problem of computing 𝐶𝐴 is known as
aperture angle problem in [Ahn et al. 2007] or as apex angle problem in [Bose; Seara;
Sethia 2004].

71



4 Global Optimization of the Circle Rotation Problem

While these definitions are rather general, we only need sets that are the interior of a
closed curve. Let 𝐴,𝐵 such sets and 𝐶1 = 𝛿(𝐴) and 𝐶2 = 𝛿(𝐵) be the curves enclosing
𝐴 and 𝐵, then the convolution curve 𝐶1 *𝐶2 is defined by summing the points having
the same normal direction. Denote the normal on 𝐶𝑖 as 𝑁𝑖 it is

𝐶1 * 𝐶2 = {𝑎+ 𝑏 : 𝑎 ∈ 𝐶1, 𝑏 ∈ 𝐶2, 𝑁1(𝑎) ‖ 𝑁2(𝑏), ⟨𝑁1(𝑎), 𝑁2(𝑏)⟩ > 0} .

Note that the Minkowski sum of convex sets is convex again. Similar, if the curves 𝐶1
and 𝐶2 enclose convex sets, then the interior of 𝐶1 and 𝐶2 is convex.

The strong relation between convolution and Minkowski sum is analyzed in [Bajaj; Kim
1989]. In general, the boundary of the Minkowski sum is a subset of the convolution,
i.e. 𝛿(𝐴 + 𝐵) ⊂ 𝛿(𝐴) * 𝛿(𝐵). However, if 𝐴 and 𝐵 are convex, equality holds. So for
convex sets 𝛿(𝐴 + 𝐵) = 𝛿(𝐴) * 𝛿(𝐵). Despite in general the convolution can be more
efficiently computed than the Minkowski sum, for convex sets both computations are
the same.

One of the simplest cases to consider are polygons. A polygon 𝐵 is represented by the
counterclockwise enumeration 𝑏1, . . . , 𝑏𝑘 of its vertices. Now 𝑎 + 𝐵 can be computed
by translating all vertices and 𝑎𝐵 by multiplying all vertices. The Minkowski sum
𝐴 + 𝐵 of two polygons is a polygon and can be computed by standard algorithms of
computational geometry. For two convex polygons, the sum 𝐴+𝐵 is itself convex and
can be computed in linear time, see e.g. [Berg et al. 2000, Theorem 13.10]. Furthermore,
for a polygon 𝐴 the set Normed [𝐴] can be computed in linear time, as the cone of
each polygon arc 𝑏𝑖𝑏𝑖+1 can be computed in constant time and the cone containing 𝐴
is the union of the cones of the arcs.

A natural extension of polygons and a concept widely used in the literature are spline-
gons. They are a generalization of polygons, where each arc is represented by an
algebraic curve. So a splinegon can be represented by a sequence 𝑏1, 𝛽1, 𝑏2, . . . , 𝑏𝑘, 𝛽𝑘

where 𝑏𝑗 are the vertices and 𝛽𝑗 algebraic curves with endpoints 𝑏𝑗 and 𝑏𝑗+1. Spline-
gons have first been considered in [Souvaine 1986], for a survey see [Dobkin; Souvaine
1990]. In particular, a polygon is a special splinegon, where each arc is a line segment.
Many geometric algorithms developed for polygons can be generalized to splinegons,
see e.g. [Bajaj; Kim 1988]. Scaling and translation can be applied componentwise. For
a splinegon 𝐵 the set Normed [𝐵] can be computed by computing the union of all sets
Normed [𝛽𝑗].

The first algorithm for computing the convolution of splinegons has been presented in
[Bajaj; Kim 1989]. This algorithm works for general, not necessarily convex splinegons.
Let 𝐶1 and 𝐶2 be splinegons with 𝑘1 resp. 𝑘2 curves with fixed maximal degree, this
algorithm has complexity 𝑂(𝑘3

1𝑘
3
2). If both splinegons are convex, the complexity re-

duces to linear time 𝑂(𝑘1+𝑘2). In [Lee; Kim; Elber 1998] an algorithm for computation
of the Minkowski sum of general splinegons based on the convolution was presented.
Note that the Minkowski sum of splinegons of maximal degree 𝑑 is a splinegon with
maximal degree 𝑑.
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(a) Domain Reduction of 𝑍1. (b) Domain Reduction of 𝑍2.

Figure 4.3: Iterative geometric domain reduction.

For convex splinegons the Minkowski sum is equal to the convolution. For this case the
algorithm of [Bajaj; Kim 1989] has been further improved in [Kohler; Spreng 1995].
We give a brief sketch of the algorithm.

Consider convex splinegons 𝐴 and 𝐵 with boundary curves 𝐶1 and 𝐶2. To each point
of the boundary of a curve a set of normal vectors is assigned. A non-differentiable
vertex is considered to have continuously changing normal vectors. Now both curves
are segmented into compatible parts, see [Kohler; Spreng 1995, Definition 6]. Thereby,
two curves are defined as compatible if they have the same set of normal vectors.
Two vertices are compatible, if their set of normal vectors intersect and a vertex and
a point are compatible, if the normal vectors of the curve are a subset of the set of
normal vectors of the point. Then similarly to the algorithm for convex polygons, the
algorithm proceeds and iterates simultaneously through both splinegons and compo-
nentwise computes the convolution of the compatible segments.

4.5.2 Geometric Domain Reduction Algorithm

We now use the concepts and algorithms of the previous section to construct a domain
reduction algorithm. We first give a geometric intuition of the domain reduction and
formalize it later in this section.

Consider two unit circles with centers 𝑐1 and 𝑐2 and connected pins with offset 1. The
idea of the geometric domain reduction is visualized in Figure 4.3. Assume that at the
beginning there is no restriction on the rotations 𝑧1 and 𝑧2, i.e. we have 𝑍1 = 𝑍2 = 𝜕𝒰 .
We know that for each possible rotation of 𝑧2 the optimal position of the pin of circle 1
is on the straight line from 𝑐1 to pin 2. Thus, as is shown in Figure 4.3a, we can reduce
the possibly optimal rotations 𝑍1 of circle 1. In the next step displayed Figure 4.3b,
the set 𝑍2 can be reduced. This procedure is repeatedly applied until no significant
reduction of the sets is possible.

In Figure 4.3a the set 𝑍1 is the intersection of the circle around 𝑐1 and the cone
from 𝑐1 containing 𝑍2. Hence, it is the normalization of the translated set 𝑍2. In
Theorem 4.18 we generalize this idea to Hermitian minimization problems, where 𝑍2
is replaced by the Minkowski sum of circular arcs. As this Minkowski sum cannot
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4 Global Optimization of the Circle Rotation Problem

be computed efficiently, in Theorem 4.19 the circular arcs are replaced by convex
splinegons. For these splinegons, the Minkowski sum and their normalization can be
computed efficiently by the methods of Section 4.5.1.

Lemma 4.16 (Composition of Domain Reductions). Let 𝑃1, . . . , 𝑃𝑘 be domain reduc-
tions as defined in Definition 4.9. Then 𝑃 := 𝑃𝑘 ∘ · · · ∘ 𝑃1 is a domain reduction.

Proof. 𝑃 (𝑍) ⊂ 𝑍 and 𝑧* ∈ 𝑍 =⇒ 𝑧* ∈ 𝑃 (𝑍) can be seen by induction.

Lemma 4.17. Let 𝑃 ′ be a domain reduction and 𝑃 a mapping such that 𝑃 ′(𝑍) ⊂
𝑃 (𝑍) ⊂ 𝑍 for all domain sets 𝑍. Then 𝑃 is a domain reduction.

Proof. We have 𝑃 (𝑍) ⊂ 𝑍 by assumption for all 𝑍. Let 𝑧* ∈ 𝑍 be an optimum, then
𝑧* ∈ 𝑃 ′(𝑍) implies 𝑧* ∈ 𝑃 (𝑍).

Theorem 4.18. Let 𝑍 = 𝑍1 × · · · × 𝑍𝑛 be a domain set. For all 𝑘 set

Γ′
𝑘(𝑍) = −Normed

⎡⎣∑︁
𝑗 ̸=𝑘

𝑞𝑘𝑗𝑍𝑗

⎤⎦ ∩ 𝑍𝑘, (4.2)

𝑃 ′
𝑘(𝑍) = 𝑍1 × · · · × 𝑍𝑘−1 × Γ′

𝑘(𝑍)× 𝑍𝑘+1 × · · · × 𝑍𝑛. (4.3)

Then 𝑃 ′
𝑘 is a domain reduction.

Proof. Obviously Γ′
𝑘(𝑍) ⊂ 𝑍𝑘 and thus 𝑃 ′

𝑘(𝑍) ⊂ 𝑍.

Now assume an optimal solution 𝑧* ∈ 𝑍. By (4.1) we get

𝑓𝑘(𝜉, 𝜋𝑘(𝑧)) = 𝜓

⎡⎣𝑞𝑘𝑘,
∑︁
𝑗 ̸=𝑘

𝑞𝑘𝑗𝑧𝑗,
∑︁

𝑖,𝑗 ̸=𝑘

𝑞𝑖𝑗𝑧𝑖𝑧𝑗

⎤⎦ (𝜉)

with 𝑞𝑘𝑘 > 0. With 𝑧*
𝑗 ∈ 𝑍𝑗 for all 𝑗 Lemma 2.18 implies

𝑧*
𝑘 ∈ argmin

𝜉∈𝜕𝒰
𝑓𝑘(·, 𝜋𝑘(𝑧)) = −Normed

⎡⎣∑︁
𝑗 ̸=𝑘

𝑞𝑘𝑗𝑧𝑗

⎤⎦ ⊂ −Normed
⎡⎣∑︁

𝑗 ̸=𝑘

𝑞𝑘𝑗𝑍𝑗

⎤⎦ .
As we already assumed 𝑧*

𝑘 ∈ 𝑍𝑘, we know 𝑧*
𝑘 ∈ Γ′

𝑘(𝑍). Especially it follows 𝑧* ∈ 𝑃 ′
𝑘(𝑍).

Thus 𝑃 ′
𝑘 is a domain reduction.

The disadvantage of 𝑃 ′
𝑘 in the above Theorem 4.18 is that it cannot be computed

efficiently. Thus we now define another domain reduction. This is not as strong as 𝑃 ′
𝑘

but can be computed efficiently.
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Theorem 4.19. Let 𝑍 = 𝑍1 × · · · × 𝑍𝑛 be a domain set. For all 𝑘 set

Γ𝑘(𝑍) = −Normed
⎡⎣∑︁

𝑗 ̸=𝑘

𝑞𝑘𝑗 conv(𝑍𝑗)
⎤⎦ ∩ 𝑍𝑘, (4.4)

𝑃𝑘(𝑍) = 𝑍1 × · · · × 𝑍𝑘−1 × Γ𝑘(𝑍)× 𝑍𝑘+1 × · · · × 𝑍𝑛. (4.5)

Then 𝑃𝑘 is a domain reduction.

Proof. For all 𝑍 we have Γ𝑘(𝑍) ⊂ 𝑍𝑘 and thus 𝑃𝑘(𝑍) ⊂ 𝑍. Furthermore,

𝑍𝑗 ⊂ conv(𝑍𝑗)
=⇒

∑︁
𝑗 ̸=𝑘

𝑞𝑘𝑗𝑍𝑗 ⊂
∑︁
𝑗 ̸=𝑘

𝑞𝑘𝑗 conv(𝑍𝑗)

=⇒ − Normed
⎡⎣∑︁

𝑗 ̸=𝑘

𝑞𝑘𝑗𝑍𝑗

⎤⎦ ⊂ −Normed
⎡⎣∑︁

𝑗 ̸=𝑘

𝑞𝑘𝑗 conv(𝑍𝑗)
⎤⎦

=⇒ Γ′
𝑘(𝑍) ⊂ Γ𝑘(𝑍)

=⇒ 𝑃 ′
𝑘(𝑍) ⊂ 𝑃𝑘(𝑍)

and by Lemma 4.17 the claim follows.

Corollary 4.20. Denote by 𝑃 ′
𝑘 the domain reductions defined in Theorem 4.18 and by

𝑃𝑘 the domain reductions defined in Theorem 4.19. Then the mappings 𝑃 ′ = 𝑃 ′
𝑛∘· · ·∘𝑃 ′

1
and 𝑃 = 𝑃𝑛 ∘ · · · ∘ 𝑃1 are domain reductions.

Proof. Immediate consequence from Lemma 4.16, Theorem 4.18 and Theorem 4.19.

We explain the meaning of this theorem. Assume a domain set 𝑍 contains an optimal
solution. Then with the domain reductions 𝑃 ′ or 𝑃 we can compute a new, potentially
smaller angle set that also contains an optimal solution. So we are performing a do-
main reduction by dropping feasible regions that do not contain the optimal solution.
Although 𝑃 ′ yields the smaller set, in practice we use 𝑃 which is easier to compute.

The Minkowski sum in each 𝑃𝑘 can be computed efficiently by the algorithms given in
Section 4.5.1. The set conv(𝑍𝑗) is a splinegon of maximal degree 2. So 𝑞𝑘𝑗 conv(𝑍𝑗) is a
splinegon of degree 2. Therefore, ∑︀𝑗 ̸=𝑘 𝑞𝑘𝑗 conv(𝑍𝑗) is a splinegon of maximal degree 2
and can be computed efficiently. Thus we can compute Γ𝑘(𝑍), 𝑃𝑘(𝑍) and subsequently
𝑃 (𝑍).

The initial domain reduction step starting from the domain set 𝑍1 = 𝑍 computes
𝑍𝑡+1 = 𝑃 (𝑍𝑡). It stops, if either 𝑍𝑡 = ∅ or 𝑍𝑡+1 ≈ 𝑍𝑡, i.e. the domain reduction
does not make significant restrictions to the domain set. We cannot require equality
𝑍𝑡+1 = 𝑍𝑡, as the generated sequence of domain sets converges to a solution but might
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Algorithm 2: Domain reduction algorithm.
Data: Domain Set 𝑍 = 𝑍1 × · · · × 𝑍𝑛

1 repeat
2 𝑍 ′ ← 𝑍;
3 for 𝑘 = 1, . . . , 𝑛 do
4 𝑍𝑘 ← Γ′

𝑘(𝑍);
5 until 𝑍 = ∅ or 𝑍 ≈ 𝑍 ′;
6 return Γ;

never reach it, see Example 4.21. For some predefined 𝛿 > 0 the formulation 𝑍𝑡+1 ≈ 𝑍𝑡

can be stated rigorously as
𝑛∑︁

𝑗=1

⃒⃒⃒
𝜌(𝑍𝑡+1

𝑘 )− 𝜌(𝑍𝑡
𝑘)
⃒⃒⃒
≤ 𝛿,

where 𝜌 is the angle size as defined in Definition 4.12.

Example 4.21. Consider the circle rotation problem with the following settings. Circle
1 is centered in 𝑐1 = −𝑎 and has a pin with offset 𝑝1 = 1. Circle 2 is centered in
𝑐2 = +𝑎 and has a pin with offset 𝑝2 = −1. There is one net connecting two pins with
weight 𝜇1 = 1. This circle rotation problem visualized in Figure 4.4 is equivalent to
the Hermitian minimization problem with

𝐻 =

⎛⎜⎝ 1 1 −2𝑎
1 1 −2𝑎
−2𝑎 −2𝑎 𝑎2

⎞⎟⎠ .
For 𝑎 ≥ 1 the optimal solution is 𝑧* = (1, 1, 1)𝑇 .

Figure 4.4: As explained in Example 4.21, the domain reduction converges to the op-
timum but never reaches it.

Assume that 𝑧3 is fixed, i.e. 𝑍3 = {1}. Then we get the mappings

Γ′
1(𝑍) = −Normed [𝑍2 − 2𝑎] ∩ 𝑍1,

Γ′
2(𝑍) = −Normed [𝑍1 − 2𝑎] ∩ 𝑍2.

Denote by 𝑆(𝑥) = 𝜕𝒰 ∩ {𝑧 ∈ C : ℜ(𝑧) ≥ 𝑥} the part of the unit circle boundary with
real part greater or equal to 𝑥. Starting the domain reduction with 𝑍0

1 = 𝑆(𝑥0) for
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0 ≤ 𝑥0 ≤ 𝑎, 𝑍0
2 = 𝜕𝒰 and 𝑍3 = {1} for 𝑍1, we iteratively obtain the domains

𝑍𝑡
1 = 𝑆(𝑥𝑡) with

𝑟𝑡+1 = 2𝑎+ 𝑥− 2𝑎√︁
1 + 4𝑎(𝑎− 𝑥𝑡)

, 𝑥𝑡+1 = 𝑟𝑡+1√︁
𝑟2

𝑡+1 + 1−𝑥2

1+4𝑎(𝑎−𝑥)

.

For 𝑎 ≥ 1 and 𝑥0 < 1, the sequence 𝑥𝑘 converges to 1 but never attains it.

4.6 Lower Bound Evaluation

In Algorithm 1, for each branch a lower bound is computed. The lower bound to the
solution is the worst lower bound of any branch. Furthermore, branches whose lower
bound value is larger than the best found solution, can be removed from the set 𝒬 of
domain sets. Therefore, it is important to compute good lower bounds efficiently.

Recall that the domain set 𝑍 = 𝑍1 × · · · × 𝑍𝑛 ⊂ 𝜕𝒰𝑛 is connected and thus each 𝑍𝑗

is a unit circle arc. Furthermore, recall that conv(𝑍) = conv(𝑍1) × · · · × conv(𝑍𝑛).
The lower bound is defined as 𝑙𝑏(𝑍) := min{𝑓(𝑧) : 𝑧 ∈ conv(𝑍)}. We first state the
problem as non-linear optimization problem. This problem is a convex optimization
problem satisfying Slater’s condition and thus can be solved by standard techniques.
However, in this section we present a block coordinate descent method to solve the
problem more efficiently.

We first describe the domain sets of the single variables by non-linear equations. If
a variable domain 𝑍𝑗 consists of a single element, the same is true for conv(𝑍𝑗). So
there is only one feasible solution which is optimal. In practice, these variables are
fixed and not be part of the optimization problem. Hence, we can w.l.o.g. assume that
all variable domains 𝑍𝑗 are a unit circle arc exp(𝚤[𝛼𝑗, 𝛽𝑗]) with 𝛼𝑗 < 𝛽𝑗.

Lemma 4.22. Let 𝑊 ⊂ 𝜕𝒰 . Then there are 𝑑 ∈ R, 𝑠 ∈ C such that

conv(𝑊 ) = {𝑧 ∈ C : |𝑧|2 − 1 ≤ 0, 𝑑−ℜ(𝑧𝑠) ≤ 0}.

Proof. Assume that 𝑊 is a proper unit circle arc, i.e. 𝑊 = exp(𝚤[𝛼, 𝛽]) with 𝛼 < 𝛽 <
𝛼 + 2𝜋. Define

𝑑 = cos
(︃
𝛼− 𝛽

2

)︃
, 𝑠 = exp

(︂
𝚤

2(𝛼 + 𝛽)
)︂
.

Then by Definition 2.8 the positive closed half space 𝐻≥ = 𝐻≥(𝑠, 𝑑) to the right of
the line from exp(𝚤𝛼) to exp(𝚤𝛽) is 𝐻≥(𝑠, 𝑑) = {𝑤 ∈ C : ℜ(𝑤𝑠) ≥ 𝑑)} and in particular
𝑊 = 𝜕𝒰 ∩𝐻≥ and conv(𝑊 ) = 𝒰 ∩𝐻≥.

If 𝑊 = 𝜕𝒰 , then conv(𝑊 ) = 𝒰 = {𝑊 : |𝑤|2 ≤ 1}. In this case, we may set 𝑑 = −2
and 𝑠 = 1 in order to make the constraint 𝑑−ℜ(𝑧𝑠) ≤ 0 redundant.
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4 Global Optimization of the Circle Rotation Problem

A lower bound 𝑙𝑏(𝑍) = min{𝑓(𝑧) : 𝑧 ∈ conv(𝑍)} can be computed by solving the
problem

min 𝑧𝐻𝐻𝑧

s. t. |𝑧𝑖|2 − 1 ≤ 0
𝑑𝑖 −ℜ(𝑧𝑖𝑠𝑖) ≤ 0, 𝑖 = 1, . . . 𝑛.

(4.6)

This is a convex optimization problem as 𝑓 and conv(𝑍) are convex. We now consider
the dual problem. As the problem is convex, there is no duality gap. The Lagrangian
is with 𝜂 ∙ 𝑠 denoting the component wise multiplication

𝐿(𝑧,𝜇,𝜂) = 𝑧𝐻𝐻𝑧 +
∑︁

𝜇𝑖(|𝑧𝑖|2 − 1) +
∑︁

𝜂𝑖(𝑑𝑖 −ℜ(𝑧𝑖𝑠𝑖))
= 𝑧𝐻(𝐻 +

∑︁
𝜇𝑖𝑒𝑖𝑒

𝑇
𝑖 )𝑧 −ℜ((𝜂 ∙ 𝑠)𝐻𝑧)−

∑︁
𝜇𝑖 +

∑︁
𝜂𝑖𝑑𝑖.

The Lagrangian dual now is for (𝜇,𝜂) ≥ 0

Θ(𝜇,𝜂) = min{𝐿(𝑧,𝜇,𝜂) : 𝑧 ∈ C𝑛}.

As 𝐻 ≻ 0 and 𝜇 ≥ 0 it follows 𝐻 + ∑︀
𝜇𝑖𝑒𝑖𝑒

𝑇
𝑖 ≻ 0. So for fixed (𝜇,𝜂) ≥ 0 the

Lagrangian is a quadratic positive definite form in 𝑧. The evaluation of the dual is
done by unconstrained minimization of a positive definite quadratic function.
Lemma 4.23. For (𝜇,𝜂) ≥ 0 the Lagrangian dual is

Θ(𝜇,𝜂) = −1
4(𝜂 ∙ 𝑠)𝐻(𝐻 +

∑︁
𝜇𝑖𝑒𝑖𝑒

𝑇
𝑖 )−1(𝜂 ∙ 𝑠)−

∑︁
𝜇𝑖 +

∑︁
𝜂𝑖𝑑𝑖.

Proof. For fixed dual variables (𝜇, 𝜂) ≥ 0, we compute the unique minimizer 𝑧0 by

∇𝑧𝐿(𝑧0,𝜇,𝜂) = 0

⇐⇒ (𝐻 +
∑︁

𝜇𝑖𝑒𝑖𝑒
𝑇
𝑖 )𝑧0 −

1
2(𝜂 ∙ 𝑠) = 0

⇐⇒ 𝑧0 = 1
2(𝐻 +

∑︁
𝜇𝑖𝑒𝑖𝑒

𝑇
𝑖 )−1(𝜂 ∙ 𝑠).

Then Θ(𝜇,𝜂) = 𝐿(𝑧0,𝜇,𝜂) yields the result.

By duality theory with (𝜇,𝜂) ≥ 0 and 𝑧 ∈ conv(𝑍) we get

Θ(𝜇,𝜂) ≤ 𝑙𝑏(𝑍) ≤ 𝑓(𝑧).

As the problem is strictly convex and Slater’s condition holds, there is a unique primal
solution 𝑧* ∈ conv(𝑍) and unique Lagrange multipliers (𝜇*,𝜂*) ≥ 0 such that equality
Θ(𝜇*,𝜂*) = 𝑓(𝑧*) holds.

Now we apply the block coordinate descent method described in Section 2.6. Geomet-
rically this method iteratively keeps all but one circle rotation fixed and then computes
the optimal rotation of this circle. If this optimization of a single circle can be done
efficiently, the method converges fast in practice.
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4.6 Lower Bound Evaluation

4.6.1 Coordinate Descent Method Application to Rotation
Problem

We now apply the block coordinate descent method to the lower bound problem
min{𝑓(𝑧) : 𝑧 ∈ conv(𝑍)} as stated in (4.6). Block coordinate descent methods have
been applied to quadratic problems over convex sets, see e.g. [Han 1988] and [Tseng
1993] and these methods can be immediately applied for lower bound evaluation.
However, the lower bound problem has a special structure which can be exploited to
simplify the algorithm and its analysis.

We already know by Lemma 2.18 and (4.1) that we can compute the optimal relaxed
rotation of one circle if all other circles are fixed. In this section we show that we can
also efficiently compute the optimal rotation if the rotation is restricted to conv(𝑊 )
for a unit circle arc 𝑊 and fixed other rotations. This observation makes the block
coordinate descent method fast for the lower bound computation.

We emphasize that all points in the sequence are feasible, i.e. we approximate the op-
timal solution value from above. As the algorithm usually never reaches the minimum
𝑙𝑏(𝑍), by the primal algorithm we only get an upper bound for 𝑙𝑏(𝑍). To get a lower
bound for 𝑙𝑏(𝑍), we have to consider the dual problem. It is easy to compute the dual
variables for the subproblem of rotating a single circle.

By applying the results shown in Section 2.6, we can show that the dual variables of the
subproblems converge to the dual variables of the global optimization problem. As the
problem is convex, there is no duality gap. So while solving the optimization problem
𝑙𝑏(𝑍) with the block coordinate descent method, we additionally get a sequence of
dual solutions converging to 𝑙𝑏(𝑍) from below.

The domain is conv(𝑍) = conv(𝑍1) × · · · × conv(𝑍𝑛). Thus the subproblem is to
minimize the objective with respect to 𝑧𝑘 ∈ conv(𝑍𝑘) and all other rotations being
fixed. From (4.1) we know 𝑓𝑘(·, 𝜋𝑘(𝑧)) = 𝜓[𝑎, 𝑢, 𝑏] with 𝑎 > 0. Using the formula-
tion of Lemma 4.22 to represent conv(𝑍𝑘), the subproblem argmin{𝑓𝑘(𝑧, 𝜋𝑘(𝑧)) : 𝑧 ∈
conv(𝑍𝑘)} can be formulated as

min
𝑧

𝑎 |𝑧|2 + 2ℜ(𝑧𝑢) + 𝑏

s. t. |𝑧|2 − 1 ≤ 0
𝑑−ℜ(𝑧𝑠) ≤ 0.

(4.7)

Theorem 4.24. Problem (4.7) has a unique primary solution and unique Lagrange
multipliers. Both the optimal primal solution and the Lagrange multipliers can be ef-
ficiently computed.

Proof. As 𝑎 > 0 the function 𝜓 = 𝜓[𝑎, 𝑢, 𝑏] is strictly convex. The domain is strictly
convex and bounded. Slater’s condition is satisfied. So there is a unique solution with
unique Lagrange multipliers. We now show a way to compute them efficiently.
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4 Global Optimization of the Circle Rotation Problem

Stating the KKT conditions there are Lagrange multipliers 𝜇, 𝜂 ≥ 0 with

(𝑎+ 𝜇)𝑧 + 𝑢− 𝜂𝑠 = 0 (4.8)
|𝑧|2 − 1 ≤ 0 (4.9)
𝑑−ℜ(𝑧𝑠) ≤ 0 (4.10)
𝜇(|𝑧|2 − 1) = 0 (4.11)
𝜂(𝑑−ℜ(𝑧𝑠)) = 0 (4.12)

We solve the KKT-equations and have to distinguish several cases.

Case 1: 𝜇 = 𝜂 = 0. Then none of the constraints is active, so the minimum is in the
interior. From (4.8) we get that 𝑧 = −𝑢

𝑎
is the unique KKT-point.

Case 2: 𝜇 = 0, 𝜂 > 0. From (4.12) we get ℜ(𝑧𝑠) = 𝑑. Furthermore, (4.8) implies
𝑧 = 1

𝑎
(𝜂𝑠− 𝑢). Thus,

𝑎𝑑 = 𝑎ℜ(𝑧𝑠) = ℜ ((𝜂𝑠− 𝑢)𝑠) = 𝜂 −ℜ(𝑢𝑠)
⇐⇒ 𝜂 = 𝑎𝑑+ ℜ(𝑢𝑠)

=⇒ 𝑧 =
(︂
𝑑+ 1

𝑎
ℜ(𝑢𝑠)

)︂
𝑠− 𝑢

𝑎
,

which is the unique KKT-point.

Case 3: 𝜇 > 0, 𝜂 = 0. Then (4.11) implies |𝑧| = 1 and from (4.8) we get

(𝑎+ 𝜇)𝑧 = −𝑢 =⇒ |𝑎+ 𝜇| |𝑧| = |𝑢| =⇒ 𝑎+ 𝜇 = |𝑢| =⇒ 𝜇 = |𝑢| − 𝑎,

and 𝑧 = −𝑢
|𝑢| is the unique KKT-point.

Case 4: 𝜇 > 0, 𝜂 > 0. Then from (4.12) we get ℜ(𝑧𝑠) = 𝑑, and (4.11) implies |𝑧| = 1.
Consequently,

|𝑧𝑠| = 1 ∧ ℜ(𝑧𝑠) = 𝑑 ⇐⇒ 𝑧𝑠 = 𝑑± 𝑖
√

1− 𝑑2 ⇐⇒ 𝑧 = 𝑠𝑑± 𝑖𝑠
√

1− 𝑑2.

In both cases the Lagrange multipliers 𝜇 and 𝜂 can be computed by solving (4.8)
as a real 2× 2 equation system.

The set of possible KKT-points is given by

𝑂𝑅[𝜓,𝑍] =
{︃
−𝑢
𝑎
, − 𝑢

|𝑢|
, 𝑠𝑑+ 𝚤𝑠

√
1− 𝑑2, 𝑠𝑑− 𝚤𝑠

√
1− 𝑑2,

(︂
𝑑+ 1

𝑎
ℜ(𝑢𝑠)

)︂
𝑠− 𝑢

𝑎

}︃
.

For each case, the Lagrange multipliers can be computed.
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4.7 Upper Bound Evaluation

We now apply the block coordinate descent method described in Section 2.6 to the
lower bound problem. We start with an initial feasible solution 𝑧0 ∈ conv(𝑍). Then
we iteratively compute 𝑧𝑡+1 from 𝑧𝑡. This is done as follows. For those 𝑧𝑘 that are not
fixed and 𝑘 = 1 . . . , 𝑛 set

𝑤𝑗 :=

⎧⎨⎩𝑧
𝑡+1
𝑗 if 𝑗 < 𝑘

𝑧𝑡
𝑗 otherwise

𝜓𝑡
𝑘 := 𝜓

⎡⎣𝑞𝑘𝑘,
∑︁
𝑗 ̸=𝑞

𝑞𝑘𝑗𝑤𝑗,
∑︁

𝑖,𝑗 ̸=𝑘

𝑞𝑖𝑗𝑤𝑖𝑤𝑗

⎤⎦
𝑧𝑡+1

𝑘 := argmin
𝜉∈conv(𝑍𝑘)

𝜓𝑡
𝑘(𝑤1, . . . , 𝑤𝑘−1, 𝜉, 𝑤𝑘+1, . . . , 𝑤𝑛).

From Theorem 4.24 we know that both 𝑧𝑡+1
𝑘 and the Lagrange multiplier 𝜇𝑡+1

𝑘 and 𝜂𝑡+1
𝑘

are unique and can be efficiently computed. As the domain is closed and convex, the
algorithm converges to a stationary point according to Theorem 2.35. As the problem
is strictly convex, this is the unique global minimum.
Corollary 4.25. Denote the constructed sequence of primal variables by 𝑧𝑡 and the
sequence of dual variables by (𝜇𝑡,𝜂𝑡). Then

∀𝑡 : Θ(𝜇𝑡,𝜂𝑡) ≤ 𝑙𝑏(𝑍) ≤ 𝑓(𝑧𝑡),
lim
𝑡→∞

𝑧𝑡 = 𝑧*,

lim
𝑡→∞

(𝜇𝑡,𝜂𝑡) = (𝜇*,𝜂*),

lim
𝑡→∞

Θ(𝜇𝑡,𝜂𝑡) = 𝑙𝑏(𝑍) = lim
𝑡→∞

𝑓(𝑧𝑡).

Proof. The first statement is the weak duality theorem. The other statements follow
from Corollary 2.38 and Theorem 2.40 and the absence of a duality gap.

In practice it is too expensive, to compute the dual value in every iteration. Evaluating
the dual function from Lemma 4.23 requires the solution of an equation system. So
for the lower bound evaluation we apply a block coordinate descent method until
the primal variables numerically converged. Then we perform one more iteration in
which we also compute the dual variables (𝜇𝑡+1,𝜂𝑡+1). As they also converge when
the primal variables converge, they are close to the optimal duals (𝜇*,𝜂*) and thus
Θ(𝜇𝑡+1,𝜂𝑡+1) = 𝑙𝑏(𝑍)− 𝜖 for a very small 𝜖 > 0. If the gap still is too large, we have
to perform more primal iterations.

4.7 Upper Bound Evaluation

In Algorithm 1, for each branch an upper bound is computed. As the algorithm ter-
minates, when the gap between the upper bound and the lower bound is small, it is
important to compute good upper bound values efficiently.
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4 Global Optimization of the Circle Rotation Problem

In this section we apply the block coordinate descent method as shown in Section 2.6
to compute an upper bound. Hence, we have to efficiently compute the minimum
argmin{𝑓𝑘(𝑧, 𝜋𝑘(𝑧)) : 𝑧 ∈ 𝑍𝑘} of the subproblem if all variables except 𝑧𝑘 are fixed.
From (4.1) we know that 𝑓𝑘(𝑧, 𝜋𝑘(𝑧)) = 𝜓[𝑎, 𝑢, 𝑏] with 𝑎 > 0 and Lemma 4.26 shows,
how to solve the subproblem.

Lemma 4.26. Let Γ = [𝛼, 𝛽] be an angle set, 𝑍 = exp(𝚤Γ) and 𝜓 = 𝜓[𝑎, 𝑢, 𝑏] with
𝑎 > 0. Then we can efficiently compute

𝑍* := argmin
𝑧∈𝑍

𝜓(𝑧).

In particular:

∙ For 𝑢 = 0: 𝜓 is constant on 𝜕𝒰 and 𝑍* = 𝑍.

∙ For 𝑢 ̸= 0 and 𝑢0 := −Normed [𝑢] ∈ 𝑍 we get 𝑍* = {𝑢0}.

∙ For 𝑢 ̸= 0 and 𝑢0 := −Normed [𝑢] /∈ 𝑍 we get

𝑍* = argmin
𝑤∈{exp(𝚤𝛼),exp(𝚤𝛽)}

|𝑤 − 𝑢0|

Proof. In the case 𝑢 = 0 by definition 𝜓(𝑧) is constant on 𝑍 ⊂ 𝜕𝒰 and the statement
holds.

For 𝑢 ̸= 0 from Remark 2.17 we get

𝜓(𝑧) = 𝑎
⃒⃒⃒⃒
𝑧 + 𝑢

𝑎

⃒⃒⃒⃒2
− |𝑢|

2

𝑎
+ 𝑏

which is minimal for minimal value of
⃒⃒⃒
𝑧 + 𝑢

𝑎

⃒⃒⃒
, i.e. for the 𝑧 ∈ 𝑍 with minimal distance

to 𝑢
𝑎
. Figure 4.5. visualizes this situation.

Figure 4.5: Possible cases to consider. 𝑡𝛼 is the ray through exp(𝚤𝛼), 𝑡𝛽 is the ray
through exp(𝚤𝛽) and 𝑡0 is the angle bisector of the angle from 𝛽 to 𝛼. The
closed areas between the rays are denoted by 𝑇𝛼𝛽, 𝑇𝛽0 and 𝑇0𝛼.

Set 𝑢0 := −Normed [𝑢] = − 𝑢
|𝑢| and 𝑢1 := −𝑢

𝑎
. Then 𝑢0 and 𝑢1 are on the same ray

from zero and thus 𝑢0 and 𝑢1 are in the same area of 𝑇𝛼𝛽, 𝑇𝛽0 and 𝑇0𝛼.
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4.8 Numerical Results

In particular, 𝑢1 ∈ 𝑇𝛼𝛽 if and only if 𝑢0 ∈ 𝑍. In this case, 𝑢0 is the closest point to 𝑢1.

Otherwise if 𝑢1 ∈ 𝑇𝛽0 the closest point to 𝑢1 in 𝑍 is exp(𝚤𝛽). Similar if 𝑢1 ∈ 𝑇0𝛼 the
closest point to 𝑢1 in 𝑍 is exp(𝚤𝛼). Especially, if 𝑢1 is on the ray 𝑡0, it has the same
distance to exp(𝚤𝛼) and exp(𝚤𝛽).

Therefore, we can apply the block coordinate descent method stated in Section 2.6 to
the upper bound problem. The assumptions of Theorem 2.35 are not satisfied as the
solution is not unique. Hence, the argument is not guaranteed to converge. However,
as 𝜓 is bounded from below, by Remark 2.36 the function values converge and the
algorithm terminates. As the method is feasible in every iteration, the computed value
is a valid upper bound for the optimal value.

4.8 Numerical Results

In this section we present the computational results of the branch and bound algorithm
for the circle rotation problem.

4.8.1 Evaluation Settings

4.8.1.1 Problem Instances

For the numerical evaluation we chose the instances described in Section 3.6.1.2 in
detail. We briefly summarize how they were generated. For each of the circuits in
Section 2.8 denote by 𝐴 the sum of all circle areas. Then a problem instance for the
rotation problem is created as follows. For a circuit instance with area 𝐴 and an area
factor 𝑎𝑓 ≥ 0 the centers of the circles are independently uniformly distributed in a
square with area 𝑎𝑓𝐴. For small area factors the circles are likely to overlap, while for
large area factors they are less dense. We chose the area factors

𝑎𝑓 ∈ {0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.

4.8.1.2 Algorithms

We evaluate the branch and bound algorithm with different settings. Refer to the
notation of Algorithm 1 on page 66.

∙ Initial symmetry breaking is done as described in Section 4.3.
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4 Global Optimization of the Circle Rotation Problem

∙ We choose the element for branching as described in Section 4.4.1. For the
branching scheme on one element, there are the two options described in Sec-
tion 4.4.2 and shown in Figure 4.1. The domain reducing branching scheme is
shown in Figure 4.1a, the lower bound improvement branching scheme is shown
in Figure 4.1b.

∙ We can either do no domain reduction or the geometric domain reduction de-
scribed in Section 4.5. Due to the lack of robust computational geometry li-
braries, we did not exactly implement the domain reduction as described in Sec-
tion 4.5 but used outer convex polygonal approximations instead of splinegons.
Details of our implementation are described in Section 4.8.1.3.

∙ Lower bound and upper bound evaluation are done by the block coordinate
descent methods described in Section 4.6 and Section 4.7. The algorithm termi-
nates, if during the last 𝑛 single step optimizations the total improvement is less
than 10−8. This high precision is necessary, as we solve the global problem up
to a very high accuracy. Numerical issues are not considered.

For each branch, the lower and upper bound and the corresponding solution
vectors are stored. Additionally, the values do not have to be reevaluated, if the
previous solution to the lower bound resp. feasible solution is still feasible for
the new branch.

∙ We set the target approximation quality to 𝜀𝑇 = 10−8. Furthermore, we used a
time limit of 𝑡𝑚𝑎𝑥 = 1ℎ.

4.8.1.3 Implemented Domain Reduction Algorithm

Implementing the algorithms in Section 4.5.1 robustly with respect to numerical in-
accuracies is difficult. Due to the lack of existing libraries, we used a different imple-
mentation.

Recall that for some 𝑘 we have compute

Γ𝑘(𝑍) = −Normed [𝐴] ∩ 𝑍𝑘 with 𝐴 =
∑︁
𝑗 ̸=𝑘

𝑞𝑘𝑗 conv(𝑍𝑗).

The hardest task is to compute the Minkowski sum efficiently. Obviously summands
with 𝑞𝑘𝑗 = 0 can be ignored.

The first idea is that we can use outer polygonal approximations of the splinegons
𝑞𝑘𝑗 conv(𝑍𝑗). Especially for small domain sets, these polygons can be good a approxi-
mation with even a small number of nodes. The Minkowski sum of convex polygons is
a standard algorithm in computational geometry, see e.g. [Berg et al. 2000, Chapter
13]. However, for the full domain set 𝑍𝑗 = 𝜕𝒰 , the set 𝑞𝑘𝑗 conv(𝑍𝑗) is a disc. But the
polygonal approximation of a disc with high precision requires polygons with a large
number of nodes.
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4.8 Numerical Results

The second idea is that the Minkowski sum of discs and fixed points is very easy to
compute. Denote by 𝐽𝑓𝑢𝑙𝑙 the indices of the variables with 𝑞𝑘𝑗 ̸= 0 and 𝑍𝑗 = 𝜕𝒰 and
by 𝐽𝑓𝑖𝑥𝑒𝑑 the indices of the fixed variables with 𝑞𝑘𝑗 ̸= 0. Furthermore, let 𝑤𝑗 ∈ 𝜕𝒰 ,
𝑗 ∈ 𝐽𝑓𝑖𝑥𝑒𝑑 be their fixed value. Denote by 𝐽𝑝𝑟𝑜𝑝𝑒𝑟 the indices of the variables with
𝑞𝑘𝑗 ̸= 0 and 𝑍𝑗 neither a single element nor a full circle.

In our implementation we first compute the Minkowski sum of all fixed angles and all
full circles.

𝐴′ :=
∑︁

𝑗∈𝐽𝑓𝑢𝑙𝑙

𝑞𝑘𝑗𝐷(0, 1) +
∑︁

𝑗∈𝐽𝑓𝑖𝑥𝑒𝑑

𝑞𝑘𝑗𝑤𝑗 = 𝐷

⎛⎝ ∑︁
𝑖∈𝐽𝑓𝑖𝑥𝑒𝑑

𝑞𝑘𝑗𝑤𝑗,
∑︁

𝑗∈𝐽𝑓𝑢𝑙𝑙

|𝑞𝑘𝑗|

⎞⎠ .
Now there are two cases. If 𝐽𝑝𝑟𝑜𝑝𝑒𝑟 = ∅, we are done and can set 𝐴 = 𝐴′.

Otherwise we create outer polygonal approximations 𝑊𝑗 to 𝑞𝑘𝑗 conv(𝑍𝑗), 𝑗 ∈ 𝐽𝑝𝑟𝑜𝑝𝑒𝑟

and 𝑊 to 𝐴′. Then we compute the Minkowski sum

𝐴 :=
∑︁

𝑗∈𝐽𝑝𝑟𝑜𝑝𝑒𝑟

𝑞𝑘𝑗𝑊𝑗 +𝑊.

For both cases the aperture angle of 𝐴 can be easily computed. Thus, as Γ𝑘(𝑍) is
the intersection of the aperture angle of 𝐴 and 𝑍𝑘, it can be computed as described
above.

4.8.2 Measured Values

For each of the problem instances we ran each of the algorithms once. As the algorithm
is deterministic and for most problem instances the running time is long enough, there
is no need for multiple runs.

The following values were measured:

Objective value 𝑢𝑏𝐴: The best feasible objective value 𝑢𝑏* at the end of Algorithm 1.

Lower bound value 𝑙𝑏𝐴: The lowest lower bound 𝑙𝑏* in the set of domain sets at the
end of Algorithm 1.

Approximation quality 𝜀𝐴: The approximation quality is 𝜀𝐴 = 𝑢𝑏𝐴/𝑙𝑏𝐴 − 1.

CPU time 𝑡𝐴: The total CPU time consumed by the algorithm.

Number of iterations: This is the number of processed nodes in the search tree, which
is the number of iterations of the loop in Algorithm 1, plus one for the root node.

CPU time for domain reduction 𝑡𝑑𝑟: The total CPU time used for domain reduction.
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CPU for upper bound evaluations 𝑡𝑢𝑏: The total CPU time used for upper bound eval-
uation. Note that not always an upper bound evaluation has to be performed,
as sometimes the solution of the previous branch is feasible for the new branch
and such a reevaluation was not required.

CPU time for lower bound evaluations 𝑡𝑙𝑏: The total CPU time used for lower bound
evaluation. Again, sometimes the lower bound of the previous branch is feasible
to the new branch.

4.8.3 Comparison of the Branching Schemes

We evaluated all instances with and without domain reduction for both branching
schemes. We compared CPU time, number of iterations and approximation quality.
The results were essentially independent of the branching scheme for all instances and
all measured values. So in the remaining part of this evaluation, we only consider the
branching scheme for lower bound improvement as shown in Figure 4.1b.

4.8.4 Domain Reducing and Non Domain Reducing Algorithm

Figure 4.6 shows the CPU time, the number of iterations and the final approximation
quality for the algorithm with and without domain reduction. The target approxima-
tion quality was set to 𝜀 = 10−8, and the running time was limited by 𝑡𝑚𝑎𝑥 = 1ℎ. We
observe that the algorithm with domain reduction yields an approximation quality
of 𝜀𝐴 = 0 for many instances, such that global optimality of the solution is ensured.
However, due to finite precision arithmetic there might still be numerical errors. In
order to use a logarithmic scale in the Figures 4.6e and 4.6f, we considered all approx-
imation qualities 𝜀𝐴 ≤ 𝜀 as 𝜀. A violet coloring indicates an instance for which 𝜀𝐴 = 0
is achieved.

Recall the problem structure analyzed in Section 3.6.2. We know that the problem is
obviously harder for a larger number of circles. Furthermore, it is harder for smaller
area factors. The smaller the area factor and the larger the number of circles, the
larger is the number if local optima. However, for area factors around 0.005, the ratio
between the worst and the best local optimal value is maximal.

In Figure 4.6 we see that the behavior of the branch and bound algorithm is related
to this problem structure. We now explain these graphs. Note that the algorithm
terminates with running time 𝑡𝐴 ≤ 𝑡𝑚𝑎𝑥 if and only if the approximation quality is
𝜀𝐴 ≤ 𝜀.1 For simplification we say the algorithm converges if and only if it reaches the
target approximation quality, i.e. 𝜀𝐴 ≤ 𝜀.

1There is the possibility that the algorithm reaches the approximation quality 𝜀 in the step, where
its running time exceeds 𝑡𝑚𝑎𝑥, so there is not strictly an equivalence. However, this occurrence is
very unlikely in practice.
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Domain Reducing Algorithm

First we look at the algorithm with domain reduction. The CPU time 𝑡𝐴 is shown
in Figure 4.6a, the iterations in Figure 4.6c and the final approximation quality 𝜀𝐴

in Figure 4.6e. Figures 4.7 and 4.8 show the approximation quality and CPU time in
more detail.

In Figure 4.6a a plateau can be recognized for CPU time = 𝑡𝐴 = 3.6·10−6𝑚𝑠 = 1ℎ. This
plateau is approximately a rectangle starting at 380 circles and area factor 𝑎𝑓 = 0.002
and reaching to smaller area factors and larger numbers of circles. For these problem
instances, the algorithm did not converge. This can also be seen in Figure 4.6e, as in
this area 𝜀𝐴 > 𝜀. Of course, for these instances the algorithm takes many iterations
(only restricted by the time limit). So in Figure 4.6c there also seems to be a plateau.
However, as the running time is bounded and an iteration takes longer for larger
instances, the value of the plateau is decreasing for increasing number of circles.

At the boundary of the area of non-convergence, the approximation quality improves.
So Figure 4.7f shows that the median approximation quality for 𝑎𝑓 = 0.002 is ten times
better than for 𝑎𝑓 = 0.001, while for 𝑎𝑓 = 0.005 the algorithm always converges.

Next to this region of non-converging instances the number of iterations and the run-
ning time decreases for both for decreasing number of circles and even more signifi-
cantly for increasing area factors (see Figures 4.8a, 4.8b and 4.8f). While for small area
factors, the number of iterations is 10000, it gets constantly 1 for larger area factors.
For these instances, the algorithm reaches the desired approximation quality without
branching. For almost all of these instances the algorithm guarantees the approxi-
mation quality 𝜀𝐴 = 0. In this region the running time only increases for increasing
number of circles.

Non Domain Reducing Algorithm

We now look at the algorithm without domain reduction. The CPU time is shown
in Figure 4.6b, the iterations in Figure 4.6d and the final approximation quality in
Figure 4.6f. Once again we refer to the details shown in Figures 4.7 and 4.8.

Similarly to the previous case, for small area factors there is a region of instances where
the algorithm does not converge. This region approximately is a rectangle starting at 19
circles and area factor 𝑎𝑓 = 0.2 and reaching to smaller area factors and larger numbers
of circles. It is obvious that this area is much larger than in the case with domain
reduction. In fact, as can be seen in Figure 4.8f the algorithm without domain reduction
only converges for large area factors greater or equal to 0.5. Of special interest is the
final approximation quality shown in Figures 4.6f and 4.7f. For increasing area factors
the approximation quality decreases, even if the algorithm does not converge.
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Algorithm Comparison

We now compare both algorithms. Usually introducing an additional domain reduc-
tion algorithm reduces the search space and thus the number of iterations. However,
this search space reduction comes along with the price of additional computation time
per iteration. Therefore, the running time might even increase by an additional do-
main reduction. However, we show that in our case the time improvement by search
space reduction significantly dominates the extra computational effort of the domain
reduction.

The algorithm with domain reduction always takes less or equal iterations than the al-
gorithm without domain reduction. This is obvious for instances where both algorithm
converges, as by the domain reduction some parts of the domain space are reduced and
do not have to be explored by branching. For instances where the algorithms do not
converge this is due to the fact that the running time is bounded and an iteration with
domain reduction takes more time than an iteration without domain reduction.

Next we consider the running times shown in Figures 4.6a, 4.6b and 4.8. In all cases the
domain reducing algorithm takes no longer than the non domain reducing algorithm.
Equality occurs almost only in the case that neither of the algorithms converges and
thus both are stopped by the time limit. For medium area factors (e.g. 𝑎𝑓 = 0.1,
see Figure 4.8d) the domain reducing algorithm takes only between few milliseconds
and two seconds, while the non domain reducing algorithm does not even converge in
one hour. For larger area factors, where both algorithms converge (e.g. 𝑎𝑓 = 2, see
Figure 4.8e) the running time of the non domain reducing algorithm is larger by orders
of magnitude.

Finally, we compare the approximation quality. For small area factors 𝑎𝑓 ≤ 0.002
and larger problem instances neither of the algorithm converges, see Figures 4.7a and
4.7b. However, for these instances the final approximation quality 𝜀𝐴 of the domain
reducing algorithm is significantly better than the approximation quality of the non
domain reducing algorithm. For medium area factors the domain reducing algorithm
converges and often even guarantees 𝜀𝐴 = 0, while the non domain reducing algorithm
does not converge. Finally, for large area factors 𝑎𝑓 ≥ 1 both algorithms converge.
However, as can be seen in Figure 4.7e, the domain reducing algorithm guarantees
optimality 𝜀𝐴 = 0 while the non domain reducing algorithm does not.
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4.8 Numerical Results

(a) Domain reduction, CPU time 𝑡𝐴 in ms. (b) No domain reduction, CPU time 𝑡𝐴 in ms.

(c) Domain reduction, iterations. (d) No domain reduction, iterations.

(e) Domain reduction, approximation quality 𝜀𝐴. (f) No domain reduction, approximation quality
𝜀𝐴.

Figure 4.6: CPU time, iterations and approximation quality 𝜀𝐴 of the algorithm with
and without domain reduction for target approximation quality 𝜀 = 10−8

and run time limit 𝑡𝑚𝑎𝑥 = 1ℎ = 3.6 · 10−6𝑚𝑠. Note the logarithmic scale
on the 𝑧-axis. In (e) the solutions with guaranteed optimality 𝜀𝐴 = 0 are
colored violet.
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(b) Approx. quality 𝜀𝐴 for 𝑎𝑓 = 0.002.
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(c) Approx. quality 𝜀𝐴 for 𝑎𝑓 = 0.01.
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(d) Approx. quality 𝜀𝐴 for 𝑎𝑓 = 0.1.
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(e) Approx. quality 𝜀𝐴 for 𝑎𝑓 = 2.0.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

10−3 10−2 10−1 100 101

(f) Approx. quality 𝜀𝐴 over area factor.

No Domain Reduction Domain Reduction

Figure 4.7: In (a) – (e): For different area factors 𝑎𝑓 the approximation quality 𝜀𝐴

(on the 𝑦-axis) is plotted over the number of circles (on the 𝑥-axis). In
(f): Median of approximation qualities 𝜀𝐴 on the 𝑦-axis is plotted over the
area factors (on the 𝑥-axis). The median is taken over all approximation
qualities of runs for this area.
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(a) Running time 𝑡𝐴 for 𝑎𝑓 = 0.
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(b) Running time 𝑡𝐴 for 𝑎𝑓 = 0.002.
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(c) Running time 𝑡𝐴 for 𝑎𝑓 = 0.01.
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(d) Running time 𝑡𝐴 for 𝑎𝑓 = 0.1.

0

50

100

5000

10000

15000

20000

25000

30000

0 300 600 900 1200

(e) Running time 𝑡𝐴 for 𝑎𝑓 = 2.0.
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Figure 4.8: In (a) – (e): For different area factors 𝑎𝑓 the running time 𝑡𝐴 (on the 𝑦-
axis) is plotted over the number of circles (on the 𝑥-axis). In (f): Median
of running times 𝑡𝐴 on the 𝑦-axis is plotted over the area factors (on the
𝑥-axis). The median is taken over all running times of runs for this area.
Note the scale break in (c) to (e).
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4.8.5 Detailed Analysis of the Domain Reducing Algorithm

As the domain reducing algorithm outperforms the non domain reducing algorithm
for all measured values and all instances, we analyze it in more detail.

Performance Analysis

In Figure 4.9 the median of the relative amount of time used in different parts of the
algorithm is shown. Note that due to technical limitations, measured times are always
a multiple of 10ms and thus very imprecise for the short running times of the algorithm
for area factors 𝑎𝑓 ≥ 0.1. However, one recognizes that most of the time is spent in
the domain reduction algorithm, approximately 90 to 100 percent. Lower bound and
upper bound evaluation approximately require the same amount of time.

The small increase of the time used for lower bound and upper bound evaluation for
𝑎𝑓 = 0 is plausible. These bound evaluations are done by the block coordinate descent
method. Especially the upper bound evaluation is very similar to the method described
in Section 3.4.3. Therefore, recall the running time behavior of the block coordinate
descent method shown in Figure 3.9, where a significant increase in running time can
be observed for the area factor 𝑎𝑓 = 0. Thus it is plausible that the upper bound
evaluation takes more time for 𝑎𝑓 = 0.

The domain reduction algorithm exerts a dominating influence on the running time.
Due to the lack of a robust implementation, we used outer polygonal approximations
of the domain sets instead of splinegons. However, compared to an exact splinegon
representation, these polygons have many vertices. We expect a significant decrease
of the running time, if a fast and robust splinegon implementation for the geometric
domain reduction is used.

Lower and Upper Bound Progression

Figure 4.10 shows the progression of the upper and lower bound over the number of
iterations for the circuit instance D1217. We observe that the upper bound almost
never decreases visibly (with an exception in Figure 4.10d). The algorithm tends to
find a good solution very early and spends most of the time by increasing the lower
bound. This is plausible from the analysis of the problem structure in Section 3.6.2,
as the ratio between the best and the worst local minimum is small. Furthermore, as
can be seen in Figure 3.5, the block coordinate descent method used for upper bound
evaluation tends to find very good solutions very often.

For the area factors 𝑎𝑓 = 0 and 𝑎𝑓 = 0.001 the initial lower bound is very low and
improves very slowly. The larger the area factor is, the better is the lower bound in
the first iteration. This can be reasoned similarly to the analysis in Section 3.6.2 and
can be deviated from Theorem 3.8. The objective function is a Hermitian form created
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Figure 4.9: Comparison of the time used for domain reduction, lower bound evaluation
and upper bound evaluation. The median of the relative domain reduction
time, lower bound and upper bound evaluation time (𝑡𝑑𝑟/𝑡𝐴, 𝑡𝑙𝑏/𝑡𝐴, 𝑡𝑢𝑏/𝑡𝐴)
are plotted versus the area factors. Due to the limited precision of mea-
surement for times below 10𝑚𝑠, values for 𝑎𝑓 ≥ 0.1 are not significant.

as shown in Theorem 3.6. For increasing area factor the last variable related to the
column (𝑢, 𝑏)𝐻 mostly has maximal impact and thus is fixed. After fixing one variable,
the function has the form

𝑓(𝑧) = 𝑏+ 𝑢𝐻𝑧 + 𝑧𝐻𝑢 + 𝑧𝐻𝐴𝑧.

Geometrically, for larger area factors the circles are less likely to overlap and thus it
is more likely that the optimal solution of the relaxed problem is at the boundary.
Furthermore, for increasing area factor the constant 𝑏 (and also 𝑢) becomes large. As
the relaxation takes lower values only for the last term 𝑧𝐻𝐴𝑧, for increasing 𝑏 and 𝑢
the approximation quality improves.

Eventually for area factors 𝑎𝑓 ≥ 0.005 the initial lower bound starts close to the upper
bound and converges very quickly.

4.8.6 Conclusion

In this section we evaluated the branch and bound algorithm for the circle rotation
problem numerically. We showed that the algorithm with domain reduction is sig-
nificantly superior to the algorithm without domain reduction in terms of number of
iterations, CPU time and approximation quality. For larger area factors, the algorithm
with domain reduction is even able to guarantee global optimality without branching.
We also identified the domain reduction step to be the most time consuming part of
the algorithm. However, we used polygonal approximations of the domain sets and
the performance of the domain reduction might be improved by using more efficient
implementations with splinegons or circular arc polygons.
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Figure 4.10: Behavior of the domain reducing algorithm for the circuit instance D1217.
For different area factors 𝑎𝑓 the upper bound 𝑢𝑏* and lower bound 𝑙𝑏* (on
the 𝑦-axis) are plotted versus the number of iterations (on the 𝑥-axis).
Note the different scales on both axes.
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Figure 5.1: The single net circle rotation problem.

In this chapter we consider the circle rotation problem defined in Chapter 3, where
circles are only connected by one net. For this problem a set of fixed centered, con-
nected circles is given. There is one connection point (pin) per circle and all pins are
connected by the same net. The single net circle rotation problem is to find a rotation
of the circles such that the connection length is minimized.

The single net circle rotation problem in the star wire length model is equivalent to
the following facility location problem: For a set of circles in the plane, find a point
with minimal squared Euclidean distances to the boundaries of the circles. This facility
location problem has recently been studied in literature and a big square small square
algorithm has been presented in [Nezakati; Zaferanieh; Fathali 2009].

In this chapter we identify problem instances, where the problem can be solved to
optimality efficiently. In Section 5.1 we formalize the single net circle rotation problem
considered in this chapter. We show that the single net circle rotation problem and the
described facility location problem are equivalent. In Section 5.2 we summarize the
rare results for this problem that are known in the literature. In Section 5.3 we show
that the problem can asymptotically be solved to optimality for instances, where the
circles are small compared to their distances. In Section 5.4 we state a modification of
the big square small square algorithm to solve the single net circle rotation problem
to global optimality.
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5.1 Problem Statement

We consider the circle rotation problem for circuits containing only a single net. Then
w.l.o.g. we can assume the net to have weight 𝜇′ = 1 in the star model. We further
assume that each circle has exactly one connection pin to the net. Then, possibly by
rotation, we can assume the offset of this pin to be real and non-negative. For some
reason explained later, we denote this pin offset by 𝑟𝑗 ∈ R≥0.

More formally, given is:

∙ A set 𝒞 of 𝑛 circles with fixed center positions 𝑐𝑗 ∈ C. The vector of the circle
centers is 𝑐 = (𝑐1, . . . , 𝑐𝑛)𝑇 .

∙ A set 𝒫 of 𝑛 pins with offset 𝑟𝑗 ∈ R≥0 from the center of circle 𝑗. The vector of
pin offsets is 𝑟 = (𝑟1, . . . , 𝑟𝑛)𝑇 .

All pins are in the same net with weight 𝜇′ = 1 in the star model. The single net circle
rotation problem then is to rotate the circles such that the wire length is minimized.

Intuitively and by the results of Section 3.5 it can be seen that for fixed net centers
it is possible, to rotate every circle in an optimal way. So for fixed net center 𝑠, the
wire length in the strict model should be the sum of the squared distances from 𝑠 to
the circle boundaries. The wire length in the relaxed model should be the sum of the
squared distances from 𝑠 to the circle discs.

We define the problem based on this geometric intuition and then show that this
problem is indeed equivalent to the single net circle rotation problem for the strict
and the relaxed case.

Definition 5.1. Let there be a circle with radius 𝑟 ∈ R≥0 around the center 𝑐 ∈ C.
Let 𝑠 ∈ C.

∙ The outer distance 𝑓 𝑜𝑢𝑡
𝑐,𝑟 of 𝑠 is the squared distance from 𝑠 to the circle boundary

if 𝑠 is outside the circle and 0 otherwise. This is the squared distance from 𝑠 to
the circle disc.

∙ The inner distance 𝑓 𝑖𝑛
𝑐,𝑟 of 𝑠 is the squared distance from 𝑠 to the circle boundary

if 𝑠 is inside the circle and 0 otherwise.

∙ The distance 𝑓 𝑠𝑢𝑚
𝑐,𝑟 of 𝑠 is the squared distance from 𝑠 to the circle boundary.

Then it is

𝑓 𝑜𝑢𝑡
𝑐,𝑟 (𝑠) = max (|𝑠− 𝑐| − 𝑟, 0)2 ,

𝑓 𝑖𝑛
𝑐,𝑟(𝑠) = min (|𝑠− 𝑐| − 𝑟, 0)2 ,

𝑓 𝑠𝑢𝑚
𝑐,𝑟 (𝑠) = (|𝑠− 𝑐| − 𝑟)2 = 𝑓 𝑜𝑢𝑡

𝑐,𝑟 (𝑠) + 𝑓 𝑖𝑛
𝑐,𝑟(𝑠).
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5.1 Problem Statement

Furthermore, we denote 𝑓 𝑜𝑢𝑡
𝑗 := 𝑓 𝑜𝑢𝑡

𝑐𝑗 ,𝑟𝑗
and similar 𝑓 𝑖𝑛

𝑗 := 𝑓 𝑖𝑛
𝑐𝑗 ,𝑟𝑗

and 𝑓 𝑠𝑢𝑚
𝑗 := 𝑓 𝑠𝑢𝑚

𝑐𝑗 ,𝑟𝑗
.

Finally, we set 𝑓 𝑜𝑢𝑡(𝑠), 𝑓 𝑖𝑛(𝑠) and 𝑓 𝑠𝑢𝑚(𝑠) as the sum over all circles.

Definition 5.2 (Point Location Problem). Given is a set of circles with centers 𝑐𝑗

and radius 𝑟𝑗, 𝑗 = 1, . . . , 𝑛.

The relaxed point location problem is to minimize 𝑓 𝑜𝑢𝑡. Geometrically this means to
find a point 𝑠 such that the sum of squared Euclidean distances to the circle discs is
minimized.

The strict point location problem is to minimize 𝑓 𝑠𝑢𝑚. Geometrically this means to
find a point 𝑠 such that the sum of squared Euclidean distances to the circle boundaries
is minimized.

Before we show the equivalence of the point location problem and the single net circle
rotation problem we repeat some definitions of Section 3.5 in this context of a single
net. It is wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) the wire length of the connection of circle 𝑗 to the net center
depending on the circle rotation 𝑧𝑗 and the net center 𝑠. Then wl𝑠,𝑗

𝑠𝑡𝑎𝑟(𝑠) and wl𝑟,𝑗
𝑠𝑡𝑎𝑟(𝑠)

is the minimum of these wire lengths depending on the net centers in the strict model
(with 𝑧𝑗 ∈ 𝜕𝒰) resp. the relaxed model (with 𝑧𝑗 ∈ 𝒰). Finally, wl𝑠𝑠𝑡𝑎𝑟(𝑠) and wl𝑟𝑠𝑡𝑎𝑟(𝑠)
are the sum of all wire lengths.

Lemma 5.3. It is wl𝑠,𝑗
𝑠𝑡𝑎𝑟 = 𝑓 𝑠𝑢𝑚

𝑗 and wl𝑟,𝑗
𝑠𝑡𝑎𝑟 = 𝑓 𝑜𝑢𝑡

𝑗 .

Proof. By Theorem 3.14 we know

wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) = 𝜓[𝑎𝑗, 𝑢𝑗(𝑠), 𝑏𝑗(𝑠)](𝑧𝑗) =: 𝜓(𝑧𝑗)

with 𝑎𝑗 = 𝑟2
𝑗 , 𝑢𝑗(𝑠) = 𝑟𝑗(𝑠− 𝑐𝑗) and 𝑏𝑗(𝑠) = |𝑠− 𝑐𝑗|2.

As in Lemma 2.19 denote the minimum of 𝜓 on 𝜕𝒰 by 𝜓*
𝑠 and the minimum of 𝜓 on

𝒰 by 𝜓*
𝑟 .

We first consider the strict problem. By Lemma 2.19 it is

wl𝑠,𝑗
𝑠𝑡𝑎𝑟(𝑠) = min

𝑧𝑗∈𝜕𝒰
wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) = 𝜓*

𝑠 = 𝑎𝑗 + 𝑏𝑗(𝑠)− 2 |𝑢𝑗(𝑠)|

= 𝑟2
𝑗 + |𝑠− 𝑐𝑗|2 − 2𝑟𝑗 |𝑠− 𝑐𝑗| = (|𝑠− 𝑐𝑗| − 𝑟𝑗)2 = 𝑓 𝑠𝑢𝑚

𝑗 (𝑠).

We now consider the relaxed problem. Then |𝑠− 𝑐𝑗| ≥ 𝑟𝑗 ⇐⇒ 𝑢𝑗(𝑠) ≥ 𝑎𝑗.

Case 1: |𝑠− 𝑐𝑗| ≥ 𝑟𝑗. Then 𝑢𝑗(𝑠) ≥ 𝑎𝑗 and by Lemma 2.19

wl𝑟,𝑗
𝑠𝑡𝑎𝑟(𝑠) = min

𝑧𝑗∈𝒰
wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) = 𝜓*

𝑟 = 𝜓*
𝑠

= (|𝑠− 𝑐𝑗| − 𝑟𝑗)2 = max (|𝑠− 𝑐𝑗| − 𝑟𝑗, 0)2 = 𝑓 𝑜𝑢𝑡
𝑗 (𝑠).
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Case 2: |𝑠− 𝑐𝑗| < 𝑟𝑗. Then 𝑢𝑗(𝑠) < 𝑎𝑗 and by Lemma 2.19

wl𝑟,𝑗
𝑠𝑡𝑎𝑟(𝑠) = min

𝑧𝑗∈𝒰
wl𝑗𝑠𝑡𝑎𝑟(𝑧𝑗, 𝑠) = 𝜓*

𝑟

= −
(︃
|𝑢𝑗(𝑠)|2

𝑎𝑗

)︃2

+ 𝑏𝑗(𝑠) = −
⎛⎝𝑟2

𝑗 |𝑠− 𝑐𝑗|2

𝑟2
𝑗

⎞⎠2

+ |𝑠− 𝑐𝑗|2

= 0 = max (|𝑠− 𝑐𝑗| − 𝑟𝑗, 0)2 = 𝑓 𝑜𝑢𝑡
𝑗 (𝑠).

Corollary 5.4. As an immediate consequence we get wl𝑠𝑠𝑡𝑎𝑟 = 𝑓 𝑠𝑢𝑚 and wl𝑟𝑠𝑡𝑎𝑟 = 𝑓 𝑜𝑢𝑡.

So, indeed the point location problem in Definition 5.2 is equivalent to the single net
circle rotation problem.

5.2 Literature Survey

The point location problem stated in Definition 5.2 is a facility location minisum
problem. Such problems have been analyzed in the literature.

In [Coope 1993] the problem to place a circle with variable radius and variable center
that minimizes the distance to a set of points is analyzed. They analytically compute
the optimal radius and show that the problem is equivalent to a variance problem.
In [Drezner; Steiner; Wesolowsky 2002] this problem is considered for several distance
measures. Furthermore, they consider a fast heuristic for the squared Euclidean dis-
tance problem.

In [Brimberg; Juel; Schöbel 2009] they consider the problem to place a circle with
variable or fixed radius and variable center such that the distance to a set of given
points is minimized. However, they analyze the Euclidean metric. Also in [Körner et al.
2009] they extend the results to general norms, but they do not consider the squared
Euclidean metric.

In [Nezakati; Zaferanieh; Fathali 2009] they consider the general problem of placing
a point such that the summed weighted Euclidean distance to the boundary of given
circles is minimized. This is exactly the point location problem stated in Definition 5.2.
As the problem is not convex, they apply the well known big square small square
(BSSS) algorithm to this problem.
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5.3 Asymptotically Optimal Algorithm

In this section we identify special instances where there is an easy algorithm to find
the global minimum. We first sketch the algorithmic idea.

We know that the relaxed problem to minimize 𝑓 𝑜𝑢𝑡 is a convex optimization problem
and, thus, can be solved to optimality. So the strict objective 𝑓 𝑠𝑢𝑚 is the sum of a
convex part 𝑓 𝑜𝑢𝑡 and a non-convex part 𝑓 𝑖𝑛. Additional 𝑓 𝑖𝑛 is the sum of non-negative
functions with compact support. The idea is that we first optimize 𝑓 𝑜𝑢𝑡 and take this
as an initial solution to the optimization of 𝑓 𝑠𝑢𝑚 = 𝑓 𝑜𝑢𝑡 + 𝑓 𝑖𝑛. However, we only have
to consider the summands of 𝑓 𝑖𝑛 which are non-zero at the minimum of 𝑓 𝑜𝑢𝑡.

In Section 5.3.1 we generalize the circle rotation problem. In Section 5.3.2 we apply
the obtained results to the rotation problem. To make the section more intuitive, we
first give an outlook to the application of each statement.

5.3.1 Generalization of the Rotation Problem

In Lemma 5.5 we analyze, how the minimum of a convex function changes, if we add
a non-negative function with bounded support. This allows us to estimate the region
containing a minimum of 𝑓 𝑜𝑢𝑡 + 𝑓 𝑖𝑛 based on the minimum of 𝑓 𝑜𝑢𝑡. The main result
of this lemma is that when 𝑓 𝑖𝑛 has bounded support which contains the minimum of
𝑓 𝑜𝑢𝑡, the minimum of 𝑓 𝑜𝑢𝑡 + 𝑓 𝑖𝑛 remains within the support.

In Lemma 5.6 we exploit the fact that 𝑓 𝑖𝑛
𝑗 is concentric to the circle center and equal

to zero at the circle boundary. We show that if circle 𝑗 contains the minimum 𝑠𝑜𝑢𝑡 of
𝑓 𝑜𝑢𝑡, the minimum of 𝑓 𝑜𝑢𝑡 + 𝑓 𝑖𝑛

𝑗 is closer to the circle boundary than 𝑠𝑜𝑢𝑡.

In Lemma 5.7 for a special structure of 𝑓 𝑜𝑢𝑡 we show, how to find the global minimum
of 𝑓 𝑜𝑢𝑡 +𝑓 𝑖𝑛. This allows us to achieve an asymptotically optimal algorithm for special
instances of the single net circle rotation problem.

Lemma 5.5. Let 𝐺 ⊂ R𝑛 and 𝑓 : 𝐺→ R be a convex function and 𝑔 : 𝐺→ R≥0 be a
non-negative function. Let 𝑠0 be a minimum of 𝑓 . Then

(i) If 𝑔(𝑠0) = 0, 𝑠0 is also a minimum of 𝑓 + 𝑔.
If 𝑓 is strictly convex, 𝑠0 is the unique minimum of 𝑓 + 𝑔.

(ii) Let 𝑈 ⊂ 𝐺. If 𝑔(𝑠) = 0 for 𝑠 ∈ 𝜕𝑈 and 𝑠0 ∈ 𝑈 , then a minimum of 𝑓 + 𝑔 is in
𝑈 . If 𝑓 is strictly convex, each minimum of 𝑓 + 𝑔 is in 𝑈 .

(iii) Let 𝑈 ⊂ 𝐺 and 𝑔(𝑠) = 0 for 𝑠 ∈ 𝜕𝑈 and 𝑠0 ∈ 𝑈 . Then

min
𝑠∈𝐺

(𝑓 + 𝑔)(𝑠) = min
𝑠∈𝐺

(𝑓 + 𝑔 · 1𝑈)(𝑠),

argmin
𝑠∈𝐺

(𝑓 + 𝑔)(𝑠) ⊂ argmin
𝑠∈𝐺

(𝑓 + 𝑔 · 1𝑈)(𝑠),
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and if 𝑓 is strictly convex

argmin
𝑠∈𝐺

(𝑓 + 𝑔)(𝑠) = argmin
𝑠∈𝐺

(𝑓 + 𝑔 · 1𝑈)(𝑠).

Proof. Proof of (i): For all 𝑠 ∈ 𝐺 it is

(𝑓 + 𝑔)(𝑠) ≥ 𝑓(𝑠)
(*)
≥ 𝑓(𝑠0) = (𝑓 + 𝑔)(𝑠0).

If 𝑓 is strictly convex, for 𝑠 ̸= 𝑠0 in (*) strict inequality holds, so 𝑠0 is the unique
minimum.

Proof of (ii): Let 𝑠1 be a minimum of 𝑓 + 𝑔. Assume 𝑠1 /∈ 𝑈 . Let 𝑠2 be an intersection
of 𝜕𝑈 and the line from 𝑠0 to 𝑠1, i.e. it is 𝑠2 = 𝜆𝑠0 + (1 − 𝜆)𝑠1 for some 𝜆 ∈ (0, 1).
With 𝑔(𝑠2) = 0 and by convexity of 𝑓

(𝑓 + 𝑔)(𝑠2) = 𝑓(𝑠2) = 𝑓(𝜆𝑠0 + (1− 𝜆)𝑠1)
(*)
≤ 𝜆𝑓(𝑠0) + (1− 𝜆)𝑓(𝑠1)

(**)
≤ 𝜆𝑓(𝑠1) + (1− 𝜆)𝑓(𝑠1) = 𝑓(𝑠1) ≤ (𝑓 + 𝑔)(𝑠1).

So 𝑠2 ∈ 𝑈 is a minimum of 𝑓 + 𝑔.

If 𝑓 is strictly convex, in (*) and (**) strict inequality holds, so (𝑓+𝑔)(𝑠2) < (𝑓+𝑔)(𝑠1)
which contradicts the assumption of 𝑠1 being a minimum.

Proof of (iii): Set 𝑔𝑈 = 𝑔 · 1𝑈 . There exists a minimum 𝑠1 of 𝑓 + 𝑔𝑈 in 𝑈 , i.e. (𝑓 +
𝑔𝑈)(𝑠1) = min𝑠∈𝐺(𝑓 + 𝑔𝑈)(𝑠). As 𝑓 + 𝑔𝑈 ≤ 𝑓 + 𝑔 it is

min
𝑠∈𝐺

(𝑓 + 𝑔)(𝑠) ≤ (𝑓 + 𝑔)(𝑠1) = (𝑓 + 𝑔𝑈)(𝑠1) = min
𝑠∈𝐺

(𝑓 + 𝑔𝑈)(𝑠) ≤ min
𝑠∈𝐺

(𝑓 + 𝑔)(𝑠),

and so equality holds in each step. Let now 𝑠′ ∈ argmin𝑠∈𝐺(𝑓 + 𝑔)(𝑠),

min
𝑠∈𝐺

(𝑓 + 𝑔𝑈)(𝑠) ≤ (𝑓 + 𝑔𝑈)(𝑠′) ≤ (𝑓 + 𝑔)(𝑠′) ≤ min
𝑠∈𝐺

(𝑓 + 𝑔)(𝑠),

i.e. equality holds and especially

(𝑓 + 𝑔𝑈)(𝑠′) = min
𝑠∈𝐺

(𝑓 + 𝑔𝑈)(𝑠) =⇒ 𝑠′ ∈ argmin
𝑠∈𝐺

(𝑓 + 𝑔𝑈)(𝑠).

If now 𝑓 is strictly convex, by applying (ii) to both 𝑓 +𝑔 and 𝑓 +𝑔𝑈 , each minimum of
𝑓+𝑔 and 𝑓+𝑔𝑈 is in 𝑈 . As both functions are equal there, their minima are equal.
Lemma 5.6. Let 𝑈 ⊂ 𝐺 ⊂ R𝑛 with 𝑈 being the closed ball with radius 𝑟 around the
origin. Let 𝑓 : 𝐺→ R be a strictly convex function and 𝑔 : 𝐺→ R≥0 be a non-negative
function only depending on ||𝑠||, i.e. 𝑔(𝑠) = ℎ(||𝑠||). Assume ℎ is monotonic decreasing
on [0, 𝑟] and ℎ(𝑟) = 0.

Let 𝑠0 ∈ 𝑈 be a minimum of 𝑓 and 𝑠1 be a minimum of 𝑓 + 𝑔. Then it is

||𝑠0|| ≤ ||𝑠1|| ≤ 𝑟,

(𝑓 + 𝑔)(𝑠0)− (𝑓 + 𝑔)(𝑠1) ≤ 𝑔(𝑠0).
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Proof. By Lemma 5.5 we have ||𝑠1|| ≤ 𝑟. Furthermore, it is

ℎ(||𝑠1||) = 𝑔(𝑠1) = (𝑓 + 𝑔)(𝑠1)− 𝑓(𝑠1) ≤ (𝑓 + 𝑔)(𝑠0)− 𝑓(𝑠0) = 𝑔(𝑠0) = ℎ(||𝑠0||)

and by monotony of ℎ it is ||𝑠1|| ≥ ||𝑠0||. It follows

(𝑓 + 𝑔)(𝑠0)− (𝑓 + 𝑔)(𝑠1) = 𝑓(𝑠0)− 𝑓(𝑠1) + 𝑔(𝑠0)− 𝑔(𝑠1) ≤ 𝑔(𝑠0).

Lemma 5.7. Let 𝑈 be the unit circle and 𝑈 ⊂ 𝐺 ⊂ R2. Let be (𝑥0, 𝑦0) ∈ 𝑈 and
𝑥0 ≥ 0, 𝑦0 ≥ 0. Let 𝑓 be an elliptic paraboloid

𝑓 : 𝐺→ R, 𝑓(𝑥, 𝑦) = (𝑥− 𝑥0)2

𝑎2 + (𝑦 − 𝑦0)2

𝑏2 ,

𝑔(𝑥, 𝑦) = (1− ||(𝑥, 𝑦)||)2 and ℎ = 𝑓 + 𝑔. Let 𝑉 = {(𝑥, 𝑦) : 𝑥 ≥ 𝑥0, 𝑦 ≥ 𝑦0, 𝑥
2 + 𝑦2 ≤ 1}.

Then:

(i) There is a global minimum of ℎ in 𝑉 .

(ii) If 𝑥0 = 0 or 𝑦0 = 0 the minimum can analytically be computed.

(iii) If 𝑥0 > 0 and 𝑦0 > 0: There is only one stationary point of ℎ in 𝑉 , which is the
global minimum. For each point at the boundary of 𝑉 there is a descent direction
into the interior of 𝑉 .

Proof. Note that there is neither a stationary point nor a local minimum in 𝑥 = 𝑦 = 0.
So we assume (𝑥, 𝑦) ̸= 0.

We first prove (i). As (𝑥0, 𝑦0) ∈ 𝑈 the global minimum (𝑥0, 𝑦0) of 𝑓 is in 𝑈 . Thus by
Lemma 5.5 we know that a global minimum of ℎ is in 𝑈 . Assume (𝑥1, 𝑦1) ∈ 𝑈 ∖ 𝑉
to be the global minimum. Then 𝑥1 < 𝑥0 or 𝑦1 < 𝑦0. Set 𝑥2 = 𝑥0 + |𝑥1 − 𝑥0| and
𝑦2 = 𝑦0 + |𝑦1 − 𝑦0|. Then it is

|𝑥2| = 𝑥0 + |𝑥1 − 𝑥0| ≥ 𝑥0 + |𝑥1| − 𝑥0 = |𝑥1| ,

where equality holds if and only if 𝑥1 ≥ 𝑥0. Similar |𝑦2| ≥ |𝑦1| with equality if and
only if 𝑦1 ≥ 𝑦0. By assumption of 𝑥1 < 𝑥0 or 𝑦1 < 𝑦0 it follows

√︁
𝑥2

2 + 𝑦2
2 >

√︁
𝑥2

1 + 𝑦2
1

=⇒ ℎ(𝑥2, 𝑦2) = (𝑥2 − 𝑥0)2

𝑎2 + (𝑦2 − 𝑦0)2

𝑏2 +
(︂

1−
√︁

(𝑥2)2 + (𝑦2)2
)︂2

<
(𝑥1 − 𝑥0)2

𝑎2 + (𝑦1 − 𝑦0)2

𝑏2 +
(︂

1−
√︁

(𝑥1)2 + (𝑦1)2
)︂2

= ℎ(𝑥1, 𝑦1)

which contradicts the assumption of (𝑥1, 𝑦1) being a minimum. This proves (i).

We now prove (ii). By (i) we can assume that 𝑥 ≥ 0 and 𝑦 ≥ 0. As we know that ℎ is
differentiable outside the origin and has no local minimum in the origin, its minimum
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must be a stationary point. Furthermore, we know that a global minimum is in 𝑉 .
Thus if we can show that there is at most one stationary point in 𝑉 , this must be a
global minimum.

In polar coordinates 𝑥 = 𝑟 cos(𝜙) and 𝑦 = 𝑟 sin(𝜙) we have

ℎ(𝑟, 𝜙) = (𝑟 cos(𝜙)− 𝑥0)2

𝑎2 + (𝑟 sin(𝜙)− 𝑦0)2

𝑏2 + 𝑟2 − 2𝑟 + 1.

With
𝐴 = 𝑟 cos(𝜙)− 𝑥0

𝑎2 , 𝐵 = 𝑟 sin(𝜙)− 𝑦0

𝑏2

for the partial derivatives we get
1
2
𝜕ℎ

𝜕𝑟
= 𝐴 cos(𝜙) +𝐵 sin(𝜙) + 𝑟 − 1,

1
2
𝜕ℎ

𝜕𝜙
= −𝐴 sin(𝜙) +𝐵 cos(𝜙).

To compute the stationary points the partial derivative have to be zero and we get
𝜕ℎ

𝜕𝑟
= 0 ∧ 𝜕ℎ

𝜕𝜙
= 0

=⇒ 𝐴 = (1− 𝑟) cos(𝜙) ∧ 𝐵 = (1− 𝑟) sin(𝜙)
=⇒ cos(𝜙)[(1 + 𝑎2)𝑟 − 𝑎2] = 𝑥0 ∧ sin(𝜙)[(1 + 𝑏2)𝑟 − 𝑏2] = 𝑦0. (*)

There we have to consider different cases:

Case 1: 𝑥0 = 0, 𝑦0 = 0, 𝑎 = 𝑏. For this case we directly work with the objective and
do not consider the derivatives. It is

ℎ(𝑟, 𝜙) = 𝑎2 + 1
𝑎2 𝑟2 − 2𝑟 + 1 = 𝑎2 + 1

𝑎2

(︃
𝑟 − 𝑎2

𝑎2 + 1

)︃2

+ 1
𝑎2 + 1

which is minimal exactly for all (𝑟, 𝜙) with 𝑟 = 𝑎2

2(𝑎2+1) . Thus all local and global
minima of ℎ are a circle with radius 𝑎2

2(𝑎2+1) around the origin.

Case 2: 𝑥0 = 0, 𝑦0 = 0, 𝑎 ̸= 𝑏. Then by (*) we have[︃
cos(𝜙) = 0 ∧ 𝑟 = 𝑦0 + 𝑏2

1 + 𝑏2

]︃
∨

[︃
sin(𝜙) = 0 ∧ 𝑟 = 𝑥0 + 𝑎2

1 + 𝑎2

]︃

Denote the first solution by 𝑧1 and the second by 𝑧2. For the Hessian it is

𝐻(𝑧1) = 2 · diag
(︃

1 + 1
𝑏2 ,

𝑏2(𝑎+ 𝑏)
𝑎2(1 + 𝑏2)2 (𝑏− 𝑎)

)︃
≻ 0 ⇐⇒ 𝑎 < 𝑏,

𝐻(𝑧2) = 2 · diag
(︃

1 + 1
𝑎2 ,

𝑎2(𝑎+ 𝑏)
𝑏2(1 + 𝑎2)2 (𝑎− 𝑏)

)︃
≻ 0 ⇐⇒ 𝑎 > 𝑏.
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The Hessian is semidefinite for 𝑎 = 𝑏 which is not considered in this case. Hence,
for 𝑎 > 𝑏 the point 𝑧1 is the only minimizer ℎ in 𝑉 . Similar for 𝑎 < 𝑏 the point
𝑧2 is the only minimizer of ℎ in 𝑉 .

Case 3: 𝑥0 = 0, 𝑦0 > 0. Then we can explicitly compute a set of 3 stationary points.
The minimum of these points is the global minimizer. From (*) we get the two
cases cos𝜙 = 0 or (1 + 𝑎2)𝑟 − 𝑎2 = 0.

For cos𝜙 = 0 we have sin(𝜙) = 1 and get as first stationary point

(𝑟, 𝜙) =
(︃
𝑦0 + 𝑏2

1 + 𝑏2 ,
𝜋

2

)︃
.

Otherwise we have (1 + 𝑎2)𝑟 − 𝑎2 = 0 and conclude from (*)

𝑟 = 𝑎2

1 + 𝑎2

=⇒ sin(𝜙)
(︃
𝑎2 − 𝑏2

1 + 𝑎2

)︃
= 𝑦0

=⇒ 𝑎 ̸= 𝑏 ∧ sin(𝜙) = 𝑦0
1 + 𝑎2

𝑎2 − 𝑏2 .

This stationary point exists if and only if

𝑎 ̸= 𝑏 and 𝑦0
1 + 𝑎2

𝑎2 − 𝑏2 ∈ [𝑦0, 1].

By comparison of these stationary points (if both exists), the minimizer can be
computed.

Case 4: 𝑥0 > 0, 𝑦0 = 0. This case is symmetric to 𝑥0 > 0, 𝑦0 = 0.

We now proof (iii), so assume 𝑥0 > 0 and 𝑦0 > 0. For 𝑥2
0 + 𝑦2

0 = 1 we are done, so
assume 𝑥2

0 + 𝑦2
0 < 1. Let 𝜙0 = arcsin(𝑦0) 𝜙1 = arccos(𝑥0), then for (𝑟, 𝜙) ∈ 𝑉 we

have 𝜙 ∈ [𝜙0, 𝜙1]. In particular, it is 0 < 𝜙0 < 𝜙1 <
𝜋
2 and we have sin(𝜙) > 0 and

cos(𝜙) > 0.

We get from (*)

𝑟 = 𝑥0

(1 + 𝑎2) cos(𝜙) + 𝑎2

(1 + 𝑎2) ∧ 𝑟 = 𝑦0

(1 + 𝑏2) sin(𝜙) + 𝑏2

(1 + 𝑏2) .

Denote the left expression as 𝑟1(𝜙), the right expression by 𝑟2(𝜙). As cos(𝜙) is strictly
decreasing in (0, 𝜋/2), 𝑟1 is strictly increasing. Similar, 𝑟2 is strictly decreasing, and
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there is at most one intersection point 𝜙′ ∈ [𝜙0, 𝜙1]. Furthermore, we have 𝑟1(𝜙1) = 1,
𝑟2(𝜙0) = 1,

𝑥2
0 + 𝑦2

0 < 1 =⇒ 𝑥2
0

1− 𝑦2
0
< 1 =⇒

⎯⎸⎸⎷ 𝑥2
0

1− 𝑦2
0
< 1 =⇒ 𝑟1(𝜙0) =

𝑎2 +
√︂

𝑥2
0

1−𝑦2
0

1 + 𝑎2 < 1

and similar 𝑟2(𝜙1) < 1. By the intermediate value theorem we conclude that 𝑟1 and 𝑟2
have exactly one intersection on [𝜙1, 𝜙2]. Thus, there is exactly one stationary point
of ℎ in 𝑉 . As 𝑉 contains the global minimum by (i), this stationary point is the global
minimum.

It remains to show that for each point at the boundary of 𝑉 there is a descent direction
into 𝑉 . Take a point (𝑟0, 𝜙0) at the boundary of 𝑉 . We have to consider different cases.

Case 1: 𝑟0 cos(𝜙0) = 𝑥0 and 𝑟0 sin(𝜙0) = 𝑦0. Then 𝑑 = (1, 0)𝑇 is a direction into 𝑉
and

𝑑𝑇∇𝑟,𝜙ℎ(𝑟0, 𝜙0) = 𝜕ℎ

𝜕𝑟
(𝑟0, 𝜙0) = 𝑟0 − 1 =

√︁
𝑥2

0 + 𝑦2
0 − 1 < 0.

Case 2: 𝑟0 = 1, cos(𝜙0) = 𝑥0 and sin(𝜙0) = 1. Then 𝑑 = (−𝜀,−1)𝑇 is a direction into
𝑉 for some small 𝜀 and

𝑑𝑇∇𝑟,𝜙ℎ(𝑟0, 𝜙0) = 2(𝜀+ 𝑥0)(𝑦0 − 1)
𝑏2 < 0.

Case 3: 𝑟0 = 1, cos(𝜙0) = 1 and sin(𝜙0) = 𝑦0. This case is similar to case 2.

Case 4: 𝑟0 cos(𝜙0) = 𝑥0 and 𝑦0 < 𝑟0 sin(𝜙0) < 1. Then 𝑑 = (0,−1)𝑇 is a direction into
𝑉 and

𝑑𝑇∇𝑟,𝜙ℎ(𝑟0, 𝜙0) = −𝜕ℎ
𝜕𝜙

(𝑟0, 𝜙0) = −2𝑥0
𝑟0 sin(𝜙0)− 𝑦0

𝑏2 < 0.

Case 5: 𝑟0 sin(𝜙0) = 𝑦0 and 𝑥0 < 𝑟0 cos(𝜙0) < 1. This case is similar to case 4.

Case 6: 𝑟0 = 1 and sin(𝜙0) > 𝑦0 and cos(𝜙0) > 𝑥0. Then 𝑑 = (−1, 0)𝑇 is a direction
into 𝑉 and

𝑑𝑇∇𝑟,𝜙ℎ(𝑟0, 𝜙0) = −𝜕ℎ
𝜕𝜙

(𝑟0, 𝜙0) = −2𝑥0
𝑟0 sin(𝜙0)− 𝑦0

𝑏2 < 0.

So for each boundary point of 𝑉 there is a descent direction into 𝑉 .

By Lemma 5.7 either it is 𝑥0 = 0 or 𝑦0 = 0 and the optimum can be analytically
computed, or we obtain the optimum by solving the non-linear program to minimize
ℎ in 𝑉 . As there is only one stationary point in 𝑉 and for each boundary point there
is a descent direction into the interior of 𝑉 , standard local non-linear solver converge
to this stationary point. We say a minimum can efficiently be computed, if it can be
computed analytically or by this non-linear program to minimize ℎ on 𝑉 .
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Corollary 5.8. Let 𝑈 be the circle with radius 𝑟 around (𝑥0, 𝑦0) and 𝑈 ⊂ 𝐺 ⊂ R2.
Denote 𝑧 = (𝑥, 𝑦). Let

𝑓 : 𝐺→ R, 𝑓(𝑧) = 𝑧𝑇𝐴𝑧 + 𝑏𝑇 𝑧 + 𝑐

be an elliptic paraboloid, i.e. 𝐴 ≻ 0. Let 𝑔(𝑥, 𝑦) = (𝑟 − ||(𝑥− 𝑥0, 𝑦 − 𝑦0)||)2. Then the
minimum of 𝑓 + 𝑔 can be efficiently computed.

Proof. By principal component analysis we can transform 𝑓 to have its main axes
parallel to the coordinate axes, i.e. to have the form of Lemma 5.7. This transformation
does not change the structure of 𝑔. We additionally translate 𝑔 to the origin. Then by
Lemma 5.7 the result follows.

Note in the settings of Corollary 5.8 that 𝑉 includes the global minimum of 𝑓 and
the global minimum of 𝑓 + 𝑔. One might think that a descending algorithm starting
in the minimum of 𝑓 would reach the optimum of 𝑓 + 𝑔. This is obviously true, if
we restrict the solutions to the set 𝑉 . However, there exist examples where there is a
strictly descending path from a minimum of 𝑓 to a local minimum of 𝑓 + 𝑔 that is not
global. For an example see Figure 5.2.

5.3.2 Application to the Circle Rotation Problem

We now transfer the results of the previous section to the rotation problem.

Assumption 5.9. In this section we assume that the circles do not overlap.

Lemma 5.10. If there are two or more circles, 𝑓 𝑜𝑢𝑡 is strictly convex.

Proof. Each 𝑓 𝑜𝑢𝑡
𝑖 (𝑠) = 𝑓 𝑜𝑢𝑡

𝑐𝑖,𝑟𝑖
(𝑠) = max(|𝑠− 𝑐𝑖| − 𝑟𝑖, 0)2 is convex, and strictly convex

outside the circle 𝑖. By assumption the circles do not overlap. Then 𝑓 𝑜𝑢𝑡 is the sum
of convex functions, where the sum contains a strictly convex functions everywhere.
Hence, 𝑓 𝑜𝑢𝑡 is strictly convex.

Corollary 5.11. Let 𝑠𝑜𝑢𝑡 be the minimum of 𝑓 𝑜𝑢𝑡 and 𝑠𝑠𝑢𝑚 a minimum of 𝑓 𝑠𝑢𝑚. If
𝑠𝑜𝑢𝑡 is within a circle 𝑗, then it is

|𝑠𝑜𝑢𝑡 − 𝑐𝑗| ≤ |𝑠𝑠𝑢𝑚 − 𝑐𝑗| ≤ 𝑟𝑗,

𝑓 𝑠𝑢𝑚(𝑠𝑜𝑢𝑡)− 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚) ≤ 𝑓 𝑖𝑛(𝑠𝑜𝑢𝑡) = 𝑓 𝑖𝑛
𝑗 (𝑠𝑜𝑢𝑡).

If 𝑠𝑜𝑢𝑡 is not in a circle, then 𝑠𝑜𝑢𝑡 = 𝑠𝑠𝑢𝑚.

Proof. This is an immediate consequence of Lemma 5.6.
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-2 -1 1 2

-2

-1

1

2

(a) Contour lines of 𝑓 (green, descending to the
center) and 𝑔 (blue, ascending to the center).
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(b) Contour lines of 𝑓 + 𝑔 and the path 𝛾 (red)
from the global minimum of 𝑓 to a non-
global minimum of 𝑓 + 𝑔. The blue point
is the global minimum.
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0.15
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(c) The graph of (𝑓 + 𝑔)(𝛾(𝑡)) shows that 𝛾 is strictly descending.

Figure 5.2: Consider the settings of Lemma 5.7 with 𝑎 = 1, 𝑏 = 3, 𝑥0 = 1
2 and

𝑦0 = 1/30. Then by Lemma 5.7 the unique global minimum of 𝑓 + 𝑔 is in
the first quadrant. Numerical computations give the global minimum at
(𝑥𝑔, 𝑦𝑔) = (0.5592, 0.7106) and a local but non-global minimum at (𝑥𝑙, 𝑦𝑙) =
(0.5659, 0.7106). Consider the path 𝛾(𝑡) = (1 − 𝑡)(𝑥0, 𝑦0) + 𝑡(𝑥𝑙, 𝑦𝑙). Then
(𝑓 + 𝑔)(𝛾(𝑡)) is a strictly decreasing path from the global minimum of 𝑓
to a non-global minimum of 𝑓 + 𝑔.
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Figure 5.3: If the optimum 𝑠𝑜𝑢𝑡 of 𝑓 𝑜𝑢𝑡 lies within the circle 𝑗 with radius 𝑟𝑗 around
𝑐𝑗, then the optimum 𝑠𝑠𝑢𝑚 of 𝑓 𝑠𝑢𝑚 is in the annulus with radii |𝑠𝑜𝑢𝑡 − 𝑐𝑗|
and 𝑟𝑗 around 𝑐𝑗.

Figure 5.3 visualizes the meaning of Corollary 5.11.

An approach is now, to optimize 𝑓 𝑜𝑢𝑡 first and if the optimum 𝑠𝑜𝑢𝑡 is within a circle,
restart the optimization of 𝑓 𝑠𝑢𝑚 from 𝑠𝑜𝑢𝑡. For most cases the problem is very well
behaved. This means, the algorithm usually finds the global optimum and, if not, the
local optimum is nearly as good as the global optimum. However, optimality is not
guaranteed. An example where the algorithm might fail is shown in Figure 5.4.

We now want to identify problems, where we can provably find a solution close to the
optimum efficiently.

Lemma 5.12. If all but one circle have radius 0, the global minimum can efficiently
be computed.

As an immediate consequence of the results of Section 3.5 we can compute the mini-
mum analytically. However, we prove it by the results of this section.

Proof. W.l.o.g. circle 𝑛 is the only circle with positive radius. If the optimum 𝑠𝑜𝑢𝑡 of
𝑓 𝑜𝑢𝑡 is outside circle 𝑛, we are done. Otherwise 𝑓 𝑜𝑢𝑡 is an elliptic paraboloid. So by
Corollary 5.8 the minimum can efficiently be computed.

The question now is, whether we can extend this property to other problem instances.
A natural extension would be to consider problems where the circles are not neces-
sarily points but still small. Before we show such a result, we have to introduce the
multivariate Taylor polynomial in real coordinates first.

Definition 5.13 (Multi-Index-Notation). Let 𝛼 ∈ N𝑛
0 and 𝑥 ∈ R𝑛, then

|𝛼| =
𝑛∑︁

𝑖=1
𝛼𝑖 𝛼! =

𝑛∏︁
𝑖=1

𝛼𝑖! 𝑥𝛼 =
𝑛∏︁

𝑖=1
𝑥𝛼𝑖

𝑖 .

Then for the partial differential we define

𝜕𝛼𝑔

𝜕𝑥𝛼
= 𝜕𝛼1

𝜕𝑥𝛼1
1
· · · 𝜕

𝛼𝑛

𝜕𝑥𝛼𝑛
𝑛

.
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(a) Contour lines of 𝑓𝑠𝑢𝑚. (b) Circle positions.

Figure 5.4: There are four circles with 𝑐 = (−1; 2 + 2𝑖; 2 − 2𝑖; 0.0755)𝑇 and 𝑟 =
(0; 2; 2; 0.75)𝑇 . The optimum of 𝑓 𝑜𝑢𝑡 is 𝑠𝑜𝑢𝑡 = 0.755. The optimal value
of ℎ is at 𝑠𝑠𝑢𝑚 = 0.3112 with 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚) = 2.7467. However, there
are local optima at 𝑠1,2 = −0.0771 ± 0.1704 with worse objective value
𝑓 𝑠𝑢𝑚(𝑠1,2) = 2.7506. The steepest descend directions show away from 𝑠𝑜𝑢𝑡.
The problem can be modified by choosing 𝑐3 = 𝑠𝑜𝑢𝑡 + 𝜅 with small 𝜅.
This does not change the optimum 𝑠𝑜𝑢𝑡 of 𝑓 𝑜𝑢𝑡 and only changes the lo-
cal optima of 𝑓 𝑠𝑢𝑚 continuously. However, a local optimization algorithm
starting in 𝑠𝑜𝑢𝑡 might converge to any of these local optima. Especially for
small 𝜅 ∈ R≤0 the algorithm does not find the global optimum.
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Theorem 5.14 (Multivariate Taylor Polynomial). Let 𝐺 be a domain and 𝑔 : 𝐺→ R
be a 𝑘 + 1 times continuously differentiable function. Let 𝑥0 ∈ 𝐺. Then the Taylor
polynomial of order 𝑛 around 𝑥0 is

𝑇𝑔,𝑥0,𝑛(𝑥) :=
∑︁

|𝛼|≤𝑘

1
𝛼!
𝜕𝛼𝑔(𝑥0)
𝜕𝑥𝛼

(𝑥− 𝑥0)𝛼.

For the error term we get

𝑅𝑔,𝑥0,𝑛(𝑥) = 𝑓(𝑥)− 𝑇𝑔,𝑥0,𝑛(𝑥) =
∑︁

|𝛼|=𝑛+1
𝑅𝑔,𝑥0,𝑛,𝛼(𝑥) · (𝑥− 𝑥0)𝛼

with a remainder satisfying

|𝑅𝑔,𝑥0,𝑛,𝛼| ≤ sup
𝑦∈𝐺

⃒⃒⃒⃒
⃒ 1
𝛼!
𝜕𝛼𝑔(𝑦)
𝜕𝑥𝛼

⃒⃒⃒⃒
⃒ .

Theorem 5.15. Denote by 𝑠𝑜𝑢𝑡 the minimum of 𝑓 𝑜𝑢𝑡. If 𝑠𝑜𝑢𝑡 is outside all circles, it
is the global optimum of 𝑓 𝑠𝑢𝑚.

Otherwise the minimum 𝑠𝑜𝑢𝑡 lies within circle 𝑘. Suppose that there is a 𝜀 > 0 such
that for all circles 𝑗 ̸= 𝑘 it is 𝑟𝑗

(|𝑐𝑗−𝑐𝑘|−𝑟𝑘)2 . Denote the optimum of 𝑓 𝑠𝑢𝑚 by 𝑠𝑠𝑢𝑚. Then
we can efficiently compute a point 𝑠0 with

𝑓 𝑠𝑢𝑚(𝑠0) ≤ 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚) + 24(𝑛− 1)𝜀𝑟3.

Especially 𝑓 𝑠𝑢𝑚(𝑠0)→ 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚) for 𝜀→ 0.

Proof. First consider the case that 𝑠𝑜𝑢𝑡 is outside all circles. There is 𝑓 𝑜𝑢𝑡 = 𝑓 𝑠𝑢𝑚 and
as 𝑓 𝑠𝑢𝑚 ≥ 𝑓 𝑜𝑢𝑡 everywhere, then 𝑠𝑜𝑢𝑡 is the global optimum of 𝑓 𝑠𝑢𝑚.

So now consider 𝑠𝑜𝑢𝑡 to be in circle 𝑘. For this proof we view complex numbers as
real vectors and especially gradients are real gradients. By translation we can assume
𝑐𝑘 = (0, 0)𝑇 . Furthermore, 𝑠𝑜𝑢𝑡 is outside all other circles. Denote by 𝑈 the disc with
radius 𝑟𝑘 around the origin and 𝑠 = (𝑥, 𝑦)𝑇 .

We first do a detailed analysis of the functions 𝑓 𝑜𝑢𝑡
𝑗 for a fixed 𝑗. Therefore, we set

𝑟 = 𝑟𝑗, (𝑎, 𝑏) = 𝑐 = 𝑐𝑗 and ℎ = 𝑓 𝑜𝑢𝑡
𝑗 .

As all our Taylor polynomials are of order 2 around the origin, we omit these infor-
mation in the index. Applying Theorem 5.14, for the Taylor expansion of order two
around 0 in 𝑈 we get

𝑇ℎ(𝑠) = ℎ(0) + (∇ℎ(0))𝑇 𝑠+ 1
2𝑠

𝑇 (∇2ℎ(0))𝑠,

𝑅ℎ(𝑠) =
∑︁

|𝛼|=3
𝑅ℎ,𝛼(𝑠) · 𝑠𝛼,

|𝑅ℎ,𝛼(𝑠)| ≤ sup
𝑧∈𝑈

⃒⃒⃒⃒
⃒ 1
𝛼!
𝜕𝛼ℎ(𝑧)
𝜕𝑥𝛼

⃒⃒⃒⃒
⃒ .
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Computing the derivatives for 𝑠 ∈ 𝑈
ℎ(𝑠) = (|𝑠− 𝑐| − 𝑟)2,

∇ℎ(𝑠) = 2(𝑠− 𝑐)− 2𝑟
|𝑠− 𝑐|

(𝑠− 𝑐),

∇2ℎ(𝑠) = 2𝐼 − 2𝑟
|𝑠− 𝑐|3

(︃
(𝑦 − 𝑏)2 −(𝑥− 𝑎)(𝑦 − 𝑏)

−(𝑥− 𝑎)(𝑦 − 𝑏) (𝑥− 𝑎)2

)︃
.

Furthermore, it is for the third partial derivatives⃒⃒⃒⃒
⃒ 𝜕3ℎ

𝜕𝑥2𝑦

⃒⃒⃒⃒
⃒ = 2𝑟
|𝑠− 𝑐|5

⃒⃒⃒
2(𝑦 − 𝑏)(𝑥− 𝑎)2 − (𝑦 − 𝑏)3

⃒⃒⃒
≤ 6𝑟
|𝑠− 𝑐|2

,⃒⃒⃒⃒
⃒𝜕3ℎ

𝜕𝑥3

⃒⃒⃒⃒
⃒ = 6𝑟
|𝑠− 𝑐|5

⃒⃒⃒
(𝑥− 𝑎)(𝑦 − 𝑏)2

⃒⃒⃒
≤ 6𝑟
|𝑠− 𝑐|2

.

By symmetry of ℎ and Schwarz theorem with 𝑠 ∈ 𝑈 for |𝑅ℎ(𝑠)| it is

|𝑅ℎ(𝑠)| ≤ 6 sup
𝑧∈𝑈

⃒⃒⃒⃒
⃒16 𝜕

3ℎ(𝑧)
𝜕𝑥3

⃒⃒⃒⃒
⃒ 𝑟3

𝑘 + 2 sup
𝑧∈𝑈

⃒⃒⃒⃒
⃒12 𝜕

3ℎ(𝑧)
𝜕𝑥2𝑦

⃒⃒⃒⃒
⃒ 𝑟3

𝑘

≤ 12𝑟
|𝑠− 𝑐|2

· 𝑟3
𝑘 ≤

12𝑟
(|𝑐| − 𝑟𝑛)2 · 𝑟

3
𝑘 ≤ 12𝜀𝑟3

𝑘.

Now we consider the function 𝑓 𝑜𝑢𝑡 again. Note that 𝑓 𝑜𝑢𝑡
𝑘 = 0 in 𝑈 . It is

𝑇𝑓𝑜𝑢𝑡(𝑠) =
𝑛−1∑︁
𝑗=1

𝑇𝑓𝑜𝑢𝑡
𝑗

(𝑠)

𝑅𝑓𝑜𝑢𝑡(𝑠) =
𝑛−1∑︁
𝑗=1

𝑅𝑓𝑜𝑢𝑡
𝑗

(𝑠)

|𝑅𝑓𝑜𝑢𝑡(𝑠)| ≤
𝑛−1∑︁
𝑗=1

⃒⃒⃒
𝑅𝑓𝑜𝑢𝑡

𝑗
(𝑠)
⃒⃒⃒
≤

𝑛−1∑︁
𝑗=1

12𝜀𝑟3
𝑘 = 12(𝑛− 1)𝜀𝑟3

𝑘.

Set 𝜌(𝑠) = 𝑓 𝑖𝑛
𝑘 (𝑠) + 𝑇𝑓𝑜𝑢𝑡(𝑠). Then we have for 𝑠 ∈ 𝑈

|𝑓 𝑠𝑢𝑚(𝑠)− 𝜌(𝑠)| =
⃒⃒⃒
𝑓 𝑜𝑢𝑡(𝑠) + 𝑓 𝑖𝑛

𝑘 (𝑠)− 𝑇𝑓𝑜𝑢𝑡(𝑠)− 𝑓 𝑖𝑛
𝑘 (𝑠)

⃒⃒⃒
= |𝑅(𝑠)| ≤ 12(𝑛− 1)𝜀𝑟3

𝑘.

Now 𝑇𝑓𝑜𝑢𝑡 is an elliptic paraboloid. So by Corollary 5.8 the minimum 𝑠0 of 𝜌(𝑠) can
be efficiently computed. For this minimum we get with 𝑠𝑠𝑢𝑚 denoting the minimum
of 𝑓 𝑠𝑢𝑚

𝑓 𝑠𝑢𝑚(𝑠0)− 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚)
= 𝑓 𝑠𝑢𝑚(𝑠0)− 𝜌(𝑠0) + 𝜌(𝑠0)− 𝜌(𝑠𝑠𝑢𝑚) + 𝜌(𝑠𝑠𝑢𝑚)− 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚)
≤ |𝑓 𝑠𝑢𝑚(𝑠0)− 𝜌(𝑠0)|+ |𝜌(𝑠𝑠𝑢𝑚)− 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚)|
≤ 24(𝑛− 1)𝜀𝑟3

𝑘

which converges to zero for 𝜀→ 0.
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5.4 Global Algorithm BASSAS

We now state a more intuitive formulation for the condition of Theorem 5.15. We
already know that if all circles except one have radius 0, then the global minimum can
be efficiently computed. So we expect the error to be small, if the circles are almost
points. The next statement says that, if the radius of the circles are small compared to
their distance to the circle containing 𝑠𝑜𝑢𝑡, then the error of the computed minimum
is small.

Corollary 5.16. Let the minimizer 𝑠𝑜𝑢𝑡 of 𝑓 𝑜𝑢𝑡 be in circle 𝑘. Denote by 𝑠𝑠𝑢𝑚 the
minimizer of 𝑓 𝑠𝑢𝑚. Assume that all circles have a positive distance to circle 𝑘, i.e.
there is some 𝑑 > 0 such that |𝑐𝑗 − 𝑐𝑘| ≥ 𝑟𝑗 + 𝑟𝑘 + 𝑑. Furthermore, assume that
the radii of the circles are small compared to their distances to the center of 𝑘, i.e.

𝑟𝑗

|𝑐𝑗−𝑐𝑘| ≤ 𝜀. Then we can efficiently compute an 𝑠0 such that 𝑓 𝑠𝑢𝑚(𝑠0) → 𝑓 𝑠𝑢𝑚(𝑠𝑠𝑢𝑚)
for 𝜀→ 0.

Proof. Denote 𝑐 = |𝑐𝑗 − 𝑐𝑘|. Then 𝑐− 𝑟𝑘 ≥ 𝑑 and 𝑟𝑗 ≤ 𝜀 · 𝑐 and it follows

𝑟𝑗

(|𝑐𝑗 − 𝑐𝑘| − 𝑟𝑘)2 = 𝑟𝑗

(𝑐− 𝑟𝑘)2 ≤ 𝜀 · 𝑐

(𝑐− 𝑟𝑘)2 = 𝜀 · 1
𝑐− 𝑟𝑘

(︂
1 + 𝑟𝑘

𝑐− 𝑟𝑘

)︂
≤ 𝜀 · 1

𝑑

(︂
1 + 𝑟𝑘

𝑑

)︂
= 𝜀 · 𝑑+ 𝑟𝑘

𝑑2 .

Theorem 5.15 yields the result.

5.4 Global Algorithm BASSAS

For location problems in the plane the BSSS algorithm is a well known branch and
bound algorithm. In [Nezakati; Zaferanieh; Fathali 2009] it was applied to the location
problem for points with minimal squared Euclidean distance to circles.

The BSSS algorithms was introduced in [Hansen; Peeters; Thisse 1981] and generalized
in [Plastria 1992]. The plane is divided into rectangular regions, for which a lower
bound can efficiently be computed. Upper bounds for the best point in a rectangle can
easily be computed by evaluating the function at a point inside the rectangle. If now
the lower bound of any rectangle is greater than the best upper bound, the rectangle
can be discarded. Remaining rectangles are successively divided into smaller ones and
the process is repeated. The algorithm stops, when a predefined tolerance is reached,
i.e. the difference between lower bound and upper bound is small. The best solution
found so far is taken as solution.

We modify this algorithm to work on annulus segments and call it big annulus segment
small annulus segment (BASSAS) algorithm. Essentially, this is a BSSS algorithm in
polar coordinates.
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5 Single Net Circle Rotation Problem

(a) Acute and obtuse angles. (b) Reflex angle.

Figure 5.5: Distance computation to annulus ring segments. For both cases the plane
is divided in nine areas. For points in 𝐴(𝐵), 𝐴(𝐶), 𝐴(𝐷), 𝐴(𝐸) the distance
to the ring segment is the distance to the point 𝐵,𝐶,𝐷,𝐸. For points in
𝐴(𝐵𝐶) and 𝐴(𝐷𝐸) the distance to the ring segment is the distance to the
line 𝐵𝐶 or 𝐷𝐸. Similar for points in 𝐴(𝐵𝐷) and 𝐴(𝐶𝐸) the distance to
the ring segment is the distance to the circular arc 𝐵𝐷 or 𝐶𝐸. And finally
for points in 𝐴(𝑅) the distance to the ring segment is zero.

Definition 5.17 (Annulus Segment). An annulus segment with radii 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥,
angles 𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥 and center 𝑐0 ∈ C is the set

𝐴𝑅(𝑐0, 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥, 𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥)
= {𝑐0 +𝑅 exp(𝚤𝜙) : 𝑅 ∈ [𝑅𝑚𝑖𝑛,≤ 𝑅𝑚𝑎𝑥], 𝜙 ∈ [𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥]} .

Lemma 5.18. The distance 𝑑(𝐴𝑅, 𝑐1) of a point 𝑐1 to an annulus ring segment 𝐴𝑅
can efficiently be computed.

Proof. Although this can be proved analytically be, we refer to Figure 5.5. There the
plane is separated to nine parts. For each point, the containing part can be determined.
Furthermore, for each part the distance to the annulus ring segment is the distance of
the point to a simple geometric object (point, circular arc, line) which can efficiently
be computed.

Lemma 5.19. Let 𝐷 ⊂ C be the disc with radius 𝑟 around 𝑐 and 𝑈 ⊂ C. Then for
the distance 𝑑(𝐷,𝑈) it is

𝑑(𝐷,𝑈) = max(𝑑(𝑐, 𝑈)− 𝑟, 0).

Proof. Let cl(𝑈) be the closure of 𝑈 and denote by 𝑢 ∈ cl(𝑈) the element such that
𝑑(𝑐, 𝑢) = 𝑑(𝑐, 𝑈).

112



5.4 Global Algorithm BASSAS

Case 1: 𝑑(𝑐, 𝑈) ≤ 𝑟. Then it is

𝑑(𝑐, 𝑢) ≤ 𝑟 =⇒ 𝑢 ∈ 𝐷 =⇒ 𝑑(𝐷, 𝑢) = 0 =⇒ 𝑑(𝐷,𝑈) = 0.

Case 2: 𝑑(𝑐, 𝑈) > 𝑟. Then 𝑢 /∈ 𝐷. So let 𝑦 be the intersection of the line from 𝑐 to 𝑢 and
𝜕𝐷. Obviously 𝑑(𝐷,𝑈) ≤ 𝑑(𝑦, 𝑢) = 𝑑(𝑐, 𝑢)−𝑟. Now assume 𝑑(𝐷,𝑈) < 𝑑(𝑐, 𝑢)−𝑟.
Then there is a 𝑧 ∈ 𝐷 and a 𝑣 ∈ cl(𝑈) such that 𝑑(𝑧, 𝑣) = 𝑑(𝐷,𝑈) < 𝑑(𝑐, 𝑢)− 𝑟.
However, then

𝑑(𝑐, 𝑣) ≤ 𝑑(𝑐, 𝑧) + 𝑑(𝑧, 𝑣) < 𝑟 + 𝑑(𝑐, 𝑢)− 𝑟 = 𝑑(𝑐, 𝑢) = 𝑑(𝑐, 𝑈)

which is impossible as 𝑣 ∈ 𝑈 . So it follows 𝑑(𝐷,𝑈) = 𝑑(𝑐, 𝑢)− 𝑟.

Algorithm 3: BASSAS algorithm to globally minimize 𝑓 𝑠𝑢𝑚.
Data: Target Approximation Quality 𝜀 > 0

1 𝑠0 ← argmin𝑠 (𝑓 𝑜𝑢𝑡(𝑠));
2 if 𝑠0 is not in a circle then return 𝑠0;
3 𝑘 ← circle containing 𝑠0;
4 𝒬 ← {𝐷𝑘};
5 𝑙𝑏* ← max{𝑙𝑏(𝑅) : 𝑅 ∈ 𝒬};
6 𝑢𝑏* ← min{𝑢𝑏(𝑅) : 𝑅 ∈ 𝒬};
7 while 𝑢𝑏* > 𝑙𝑏* · (1 + 𝜀) do
8 take 𝑅̂ ∈ 𝒬;
9 divide 𝑅̂ into {𝑅̂𝑗, 𝑗 ∈ 𝐽};

10 𝒬 ← 𝒬 ∖ {𝑅̂} ∪ {𝑅̂𝑗} : 𝑗 ∈ 𝐽};
11 𝑙𝑏* ← max{𝑙𝑏(𝑅) : 𝑅 ∈ 𝒬};
12 𝑢𝑏* ← min{𝑢𝑏(𝑅) : 𝑅 ∈ 𝒬};

In Algorithm 3 we state the algorithm BASSAS to globally minimize 𝑓 𝑠𝑢𝑚. There 𝐷𝑗

denotes the disc with radius 𝑟𝑗 around 𝑐𝑗. We explain the main steps:

Domain Sets All domain sets in 𝒬 are annulus rings during the algorithm (at the
beginning degenerated as a circular disc).

Upper Bound Computation We can apply any local non-linear solver to compute an
upper bound of 𝑓 𝑠𝑢𝑚(𝑠) on a domain 𝑅, as each feasible solution suffices.
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5 Single Net Circle Rotation Problem

Lower Bound Computation Note that all annulus ring segments 𝑅 ∈ 𝒬 are subsets
of 𝐷𝑘. Thus for the annulus ring 𝑅 with maximal radius 𝑟 it is

𝑙𝑏(𝑅) = min
𝑠∈𝑅

𝑓 𝑠𝑢𝑚(𝑠) = min
𝑠∈𝑅

⎛⎝𝑓 𝑖𝑛
𝑘 (𝑠) +

∑︁
𝑗 ̸=𝑘

𝑓 𝑜𝑢𝑡
𝑗 (𝑠)

⎞⎠
≤ min

𝑠∈𝑅
𝑓 𝑖𝑛

𝑘 (𝑠) + min
𝑠∈𝑅

∑︁
𝑗 ̸=𝑘

𝑓 𝑜𝑢𝑡
𝑗 (𝑠) ≤ 𝑟𝑘 − 𝑟 + min

𝑠∈𝑅

∑︁
𝑗 ̸=𝑘

𝑓 𝑜𝑢𝑡
𝑗 (𝑠)

⏟  ⏞  
𝑔(𝑠)

.

The last inequality holds, as the annulus ring segment 𝑅 and 𝐷𝑘 are concentric.
Then it is min𝑠∈𝑅 𝑓

𝑖𝑛
𝑘 (𝑠) = 𝑑(𝜕𝐷𝑘, 𝑅) = 𝑟𝑘 − 𝑟.

Hence, it remains to compute a lower bound of 𝑔. As 𝑔(𝑠) is a convex function,
we can minimize it to global optimality over conv(𝑅).

Furthermore, we can compute a lower bound as follows:

𝑔(𝑠) ≥
∑︁
𝑗 ̸=𝑘

min
𝑠∈𝑅

𝑓 𝑜𝑢𝑡
𝑗 (𝑠) =

∑︁
𝑗 ̸=𝑘

𝑑(𝐷𝑗, 𝑅).

As 𝐷𝑗, 𝑗 ̸= 𝑘 and 𝑅 ⊂ 𝐷𝑘 do not overlap by assumption, the distance 𝑑(𝐷𝑗, 𝑅)
can be efficiently computed by Lemma 5.18 and Lemma 5.19.

Branching We choose the annulus ring segment 𝑅̂ ∈ 𝒬 with maximal lower bound
to branch on. Let 𝑅̂ = 𝐴𝑅(𝑐0, 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥, 𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥). Then it is split into
four parts by bisection of both the interval [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥] and the angle interval
[𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥]. Thus it is with 𝑅𝑚 = (𝑅𝑚𝑖𝑛 +𝑅𝑚𝑎𝑥)/2 and 𝜙𝑚 = (𝜙𝑚𝑖𝑛 + 𝜙𝑚𝑎𝑥)/2

{𝑅̂𝑗, 𝑗 ∈ 𝐽} = {𝐴𝑅(𝑐𝑘, 𝑅𝑚𝑖𝑛, 𝑅𝑚, 𝜙𝑚𝑖𝑛, 𝜙𝑚), 𝐴𝑅(𝑐𝑘, 𝑅𝑚𝑖𝑛, 𝑅𝑚, 𝜙𝑚, 𝜙𝑚𝑎𝑥),
𝐴𝑅(𝑐𝑘, 𝑅𝑚, 𝑅𝑚𝑎𝑥, 𝜙𝑚𝑖𝑛, 𝜙𝑚), 𝐴𝑅(𝑐𝑘, 𝑅𝑚, 𝑅𝑚𝑎𝑥, 𝜙𝑚, 𝜙𝑚𝑎𝑥)}.
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6 Unit Circle Placements

In this chapter we consider placements of unit circles belonging to the same net. We
consider placements with optimal area as well as placements with optimal wire length
and how these placements are related.

This relation is of interest, as in electronics design the placement must have a short
wire length and the packing must be dense.

The problem to find the densest packing of unit circles in the plane has extensively
been studied in the literature. Also, the problem to pack unit circles such that their
connection length is minimal has been analyzed. However, to our best knowledge the
relation of these optimal packings has not been studied.

In this chapter we asymptotically prove for unit circle lattice packings that wire length
optimal packings imply area optimal packings. We also show that the converse impli-
cation is not true. This fact supports to focus on wire length optimal placements in
this thesis.

In Section 6.1 we summarize results of finite and infinite area optimal circle packings
in the plane. We focus on free packings and characterize the packings with optimal
packing density. In Section 6.2 we survey results from the literature known for packing
circles such that their connection length is minimized. Applying the results of the first
two sections of this chapter, in we analyze the relation of area optimal and wire length
optimal packings in Section 6.3. We show that packings with optimal wire length are
also asymptotically area optimal. However, the converse is not true, i.e. the packings
with optimal area do not have optimal wire length.

6.1 Area Optimal Packings

6.1.1 Literature Survey

The densest packing of identical circles in the plane is the hexagonal lattice packing.
Gauss proved that the hexagonal packing is the densest packing of all plane lattice
packings. The first proof that this is indeed the densest of all (possibly non-lattice)
packings was claimed by Thue in 1892 and 1910. However, the first flawless proof was
done by Tóth around 1940 ([Böröczky 2004, Chapter 4]). The packing density of the
hexagonal packing is 𝜋/

√
12.
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For finite packings the problem is more complicated. For fixed boundaries there are
only heuristics and some theoretical results for very few circles, usually based on
computer aided optimality proves. For packing congruent circles in a square, see e.g.
[Markót; Csendes 2005]. For packing congruent circles in a circle, optimal results are
known for up to 13 and for 19 circles, see e.g. [Fodor 1999] and [Fodor 2003].

Therefore, in literature often so called free packings are considered. For free packings,
there is no fixed boundary, instead the convex hull of the circles is considered. Based
on [Groemer 1960] the problem of packing identical circles such that the convex hull
is minimal is solved for most natural numbers in [Wegner 1986] by transformation to
a number theoretic problem. Wegner shows that the first natural number for which
his solution does not prove optimality is 121. In [Böröczky; Ruzsa 2007] it is shown
that Wegner’s solution proves optimality for 23/24 of all natural numbers.

6.1.2 Definitions

We state some definitions and results from literature first. They are based on [Böröczky
2004] and [Tóth 1972].

Definition 6.1 (Lattice). Let 𝑣1, . . . ,𝑣𝑛 ∈ R𝑛 be a set of linear independent vectors.
A lattice is the subgroup

Λ :=
{︃

𝑛∑︁
𝑖=1

𝜆𝑖𝑣𝑖 : 𝜆𝑖 ∈ Z, 𝑖 = 1, . . . , 𝑛
}︃
.

The vectors 𝑣1, . . . ,𝑣𝑛 are called a basis of Λ.

For the same lattice there exist different bases. However, the absolute value of the
determinant of the basis vectors is uniquely determined by the lattice Λ and denoted
by det(Λ).

The most common Lattices are Z𝑛. For circle packing the two-dimensional hexagonal
lattice 𝐴2 with basis (2, 0)𝑇 , (1,

√
3)𝑇 and det(𝐴2) =

√
12 is important. A circle packing

on this lattice is shown in Figure 6.1b.

Definition 6.2 (Packing). Let Π ⊂ R2 be a convex region. Let 𝐵𝑖 ⊂ Π, 𝑖 ∈ 𝐼, be a
family of circles with centers 𝑐𝑖.

∙ A packing is a placement of the circles such that no circles overlap.

∙ A lattice packing is a packing such that the circle centers 𝑐𝑖 lay on a lattice.

For a region 𝐺 ⊂ R2 we label the area as 𝐴(𝐺) and the perimeter as 𝑃 (𝐺).
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Definition 6.3 (Packing Density). Let Π ⊂ R2 be a convex region and ℬ = {𝐵𝑖, 𝑖 ∈ 𝐼}
be a circle packing in Π. With 𝐷𝑅 we denote the circle with radius 𝑅 around the origin.
Then the packing density of ℬ with respect to Π is

𝛿 := lim
𝑅→∞

∑︀
{𝑖:𝐵𝑖⊂𝐷𝑅} 𝐴(𝐵𝑖)
𝐴(𝐷𝑅 ∩ Π) .

It can be shown that the definition for infinite packings does not depend on the choice
of the origin.

Usually we are interested in either infinite packings with Π = R2 or finite packings
with Π being the convex hull of the circles. Thus for a packing ℬ = {𝐵𝑖, 𝑖 ∈ 𝐼}, we
define the packing density of ℬ to be the packing density of ℬ with respect to the
convex hull conv (⋃︀𝑖∈𝐼 𝐵𝑖) of all circles.

Lemma 6.4. For a finite packing ℬ = {𝐵𝑖, 𝑖 ∈ 𝐼} the packing density is

𝛿 :=
∑︀𝑛

𝑖=1 𝐴(𝐵𝑖)
𝐴(Π) .

For a dense infinite lattice packing of congruent circles 𝐵 on the lattice Λ the packing
density is

𝛿 = 𝐴(𝐵)
det(Λ) .

Definition 6.5 (Voronoi Cell). Let Π ⊂ R2 be a convex region and 𝐵𝑖 ⊂ Π be a
packing of congruent circles. The Voronoi cell 𝑉𝑖 of circle 𝑖 is the set of points in Π
whose distance to 𝑐𝑖 is not greater than to any other 𝑐𝑗, 𝑗 ̸= 𝑖.

Definition 6.6 (Local Packing Density). Let Π ⊂ R2 be a convex region. Let 𝐵𝑖 ⊂ Π
be a packing of congruent circles and 𝑉𝑖 be the Voronoi cell of 𝐵𝑖. The local density of
cell 𝑖 is

𝛿𝑖 := 𝐴(𝐵𝑖)
𝐴(𝑉𝑖)

.

6.1.3 Infinite Area-Optimal Packings

Intuitively, the densest packing of three circles of radius 𝑟 is, to pack them at the corner
points of a triangle of edge length 2𝑟. The ratio of the area of the triangle covered by
circles and the total triangle area is independent of 𝑟 and given by 𝜎 = 𝜋/

√
12. This

packing is shown in Figure 6.1.

Claimed in 1892 by Thue and proven by Tóth around 1940 is the following famous
result of Theorem 6.7.
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6 Unit Circle Placements

(a) Triangle bound: The
triangle bound 𝜎 is the
ratio of the area of the
triangle covered by circles
and the total area of the
triangle.

(b) The hexagonal lattice packing is the densest
packing in the plane.

Figure 6.1: Triangle bound and the hexagonal lattice packing.

Theorem 6.7 (Densest Packing of Circles is the Hexagonal Lattice Packing). For
each finite or infinite packing ℬ = {𝐵𝑖, 𝑖 ∈ 𝐼} of unit circles (with more than two
elements) it is 𝛿 ≤ 𝜎. Furthermore, for all local densities it is 𝛿𝑖 ≤ 𝜎. For the infinite
packing, equality for all local densities only holds for the hexagonal lattice packing.

If the Voronoi cell 𝑉𝑖 is a polygon (always true if 𝑉𝑖 is not at the boundary), it is 𝛿𝑖 = 𝜎
if and only if 𝑉𝑖 is a regular hexagon.

6.1.4 Finite Area-Optimal Packings

For finite packings the results are more complex. Based on [Groemer 1960], in [Weg-
ner 1986] a conjecture of Tóth was proved that the area optimal packings are those
hexagonal packings, which are as close to a regular hexagon as possible. We now state
the main results.

Definition 6.8 (Groemer Packing). A Groemer packing is a hexagonal lattice packing
where the convex hull of the circle centers is a polygon that can be triangulated in
(possibly degenerated) triangles of edge length 2 in such a way that each triangle corner
is the center of a circle.

Theorem 6.9 (Thue-Groemer-Inequality). Let {𝐵1, . . . , 𝐵𝑛} be a unit circle packing.
Let Π be a convex region containing the circle centers. Then

𝐴(Π)√
12

+ 𝑃 (Π)
4 + 1 ≥ 𝑛. (6.1)

Equality holds if and only if the packing is a Groemer packing and Π is the convex hull
of the circle centers.
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6.1 Area Optimal Packings

(a) A Groemer packing is a dense lattice
packing with hexagonal boundary.

(b) A line of circles
is a degenerated
Groemer packing.

(c) A single circle
is a degener-
ated Groemer
packing.

Figure 6.2: Different kinds of Groemer packings.

Now let ℬ = {𝐵1, . . . , 𝐵𝑛} be a packing. If Π′ is a convex region containing the circles
and Π𝑛 is the convex hull of the circle centers, then 𝐴(Π′) ≥ 𝐴(Π𝑛) + 𝑃 (Π𝑛) + 𝜋 and
it follows

𝐴(Π′) ≥ 2
√

3(𝑛− 1) + 1
2(2−

√
3)𝑃 (Π𝑛) + 𝜋. (6.2)

Equality holds, if and only if ℬ is a Groemer packing and Π′ is its convex hull. So,
the area 𝐴(Π′) of the convex hull Π′ of a Groemer packing is minimal if the perimeter
𝑃 (Π′) is minimal.

If ℬ is a Groemer packing, Π𝑛 is a convex polygon with at most six sides. So the
isoperimetric inequality for hexagons yields 𝐴(Π𝑛) ≤ (

√
3/24)𝑃 (Π𝑛)2 and so by (6.1)

we get 𝑃 (Π𝑛) ≥ 2
⌈︁√

12𝑛− 3− 3
⌉︁
. So, it follows by (6.2) that

𝐴(Π′) ≥ 2
√

3(𝑛− 1) + (2−
√

3)
⌈︁√

12𝑛− 3− 3
⌉︁

+ 𝜋. (6.3)

Definition 6.10 (Wegner Packing). A Groemer packing 𝐵1, . . . , 𝐵𝑛 is a Wegner pack-
ing if 𝑃 (𝐶𝑛) = 2

⌈︁√
12𝑛− 3− 3

⌉︁
.

The main result in [Wegner 1986] is the generalization of (6.3).

Theorem 6.11 (Wegner Theorem). Let 𝐵1, . . . , 𝐵𝑛 be a packing and Π′ be a convex
region containing all circles. Then (6.3) holds. Equality holds if and only if the packing
is a Wegner packing.

Hence, if there is a Wegner packing for a given number 𝑛 of circles, all optimal packings
are Wegner packings. However, there might exist multiple Wegner packings (𝑛 = 18)
or no Wegner packing (𝑛 = 121). But even if there is no Wegner packing, there are
near optimal Groemer packings.
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6 Unit Circle Placements

Theorem 6.12 (Wegner Theorem). For all 𝑛 ≥ 2 there is a Groemer packing of 𝑛
circles such that for the convex hull Π′ we have

𝐴(Π′) ≤ 2
√

3(𝑛− 1) + (2−
√

3)
⌈︁√

12𝑛− 3− 2
⌉︁

+ 𝜋. (6.4)

The following theorem of [Böröczky; Ruzsa 2007] characterizes the number of circles
for which Wegner packings exist.

Theorem 6.13. For given 𝑛 ≥ 2, there is a Wegner packing of 𝑛 unit circles if and
only if

∃ 𝑘,𝑚 ∈ N+ :
⌈︁√

12𝑛− 3
⌉︁2

+ 3− 12𝑛 ̸= (3𝑘 − 1) · 9𝑚.

For 𝑁 ∈ N let 𝑊𝑁 be the set of Wegner numbers in {2, . . . , 𝑁}. Then it is

lim
𝑁→∞

|𝑊𝑁 |
𝑁

= 23
24 .

This yields the following conjecture [Böröczky; Ruzsa 2007].

Conjecture 6.14. Any densest packing of 𝑛 unit circles is some Groemer packing.

6.2 Wire Length Optimal Packings

The problem to pack identical connected circles such that their wire length is min-
imized has been hardly studied in literature. In [Graham; Sloane 1990] the problem
has first been considered and in [Chow 1995] it is solved for lattice packings. There it
is proved that the optimal packings have a circular shape. In this section we state the
main results of the publications [Graham; Sloane 1990] and [Chow 1995].

Definition 6.15. For a finite set 𝐶 ⊂ R2 of point with gravity center 𝑐0, the wire
length is

wl(𝐶) :=
∑︁
𝑐∈𝐶

||𝑐− 𝑐0||2 .

Consider 𝑛 unit circles which centers are pairwise connected. Let 𝑐1, . . . , 𝑐𝑛 be the
centers of the circles. Ignoring the constant scaling, by Lemma 3.11 the wire length is
equal to the wire length defined in Definition 6.15. The question for a given number
𝑛 is to find a packing of 𝑛 unit circles such that its wire length is minimal.

Although not proven, in [Graham; Sloane 1990] the following conjecture was stated.

Conjecture 6.16. For 𝑛 ̸= 4 the packing with minimal wire length is a hexagonal
lattice packing.
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The case 𝑛 = 4 is an exception, as there are several placements with wire length 4.

We now state the main theoretical results of [Graham; Sloane 1990] and, if related,
[Calderbank; Sloane 1987]. Note that in these papers a different scaling of the hexag-
onal lattice is used.

Definition 6.17 (Circular Cluster). Let 𝑐0 ∈ R2 and 𝑡 ≥ 0. Then let 𝐶 = {𝑐 ∈ 𝐴2 :
|𝑐− 𝑐0| ≤ 𝑡}. If the centroid of 𝐶 is 𝑐0 again, 𝐶 is called a circular cluster.

Lemma 6.18 (Lower Bound on Wire Length). Let 𝐶 be the centers of a circle packing
with 𝑛 circles. Then

wl(𝐶) ≥
𝑛∑︁

𝑘=1

⎛⎝√︃2
√

3
𝜋

(𝑘 − 1) + 3
4 −
√

3
2

⎞⎠2

=
√

3
𝜋
𝑛2 +𝑂(𝑛).

Lemma 6.19 (Wire Length of Circular Clusters). For circular clusters 𝐶 with 𝑛
circles in hexagonal lattices centered at lattice points it is

wl(𝐶) =
√

3
𝜋
𝑛2 +𝑂(𝑛).

Corollary 6.20. Denote 𝐶𝑛 the centers of the wire length optimal packing with 𝑛
circles. Then

lim
𝑛→∞

1
𝑛2 wl(𝐶𝑛) =

√
3
𝜋
.

In [Chow 1995] based on Conjecture 6.16 mainly hexagonal lattice packings are con-
sidered. They call a package 𝐴2-optimal if it is the optimal packing of all hexagonal
lattice packings.

Theorem 6.21. All 𝐴2-optimal packings are circular clusters.

They remarked that the converse is not true. There might be circular clusters that
are not optimal. Furthermore, they proposed a polynomial time algorithm to find an
optimal 𝐴2-packing.

6.3 Asymptotic Analysis of Shaped Clusters

In this section we assume Λ to be a lattice such that each two lattice points have a
distance at least two.

First we introduce some notations and state some results known in the literature.
Later we prove the main results of this chapter. We consider packings of an increasing
number of congruent circles in one net. Then asymptotically the packings with optimal
wire length are area optimal, while the packings with optimal area are not wire length
optimal.
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6 Unit Circle Placements

Definition 6.22 (Center of Gravity). Let Π ⊂ R2. The center of gravity 𝑅(Π) is

𝑅(Π) := 1
𝐴(Π)

∫︁
Π
𝑥 d𝑥.

Definition 6.23 (Moment of Inertia). Let Π ⊂ R2. Let the point 𝑥0 be the center of
rotation. Then the moment of inertia 𝐽(Π) around 𝑥0 is defined as

𝐽𝑥0(Π) :=
∫︁
||𝑥− 𝑥0||2 d𝑥.

With 𝐽(Π) we denote the moment of inertia around the gravity center.
Theorem 6.24 (Parallel Axis Theorem). Let be Π ⊂ R2. Let 𝑥0 ∈ R2 be the gravity
center of Π and 𝑥1 ∈ R2 be arbitrary. Then

𝐽𝑥1(Π) = 𝐽(Π) + 𝐴(Π) · ||𝑥1 − 𝑥0||2 .

Definition 6.25 (Shaped Cluster). Let Π ⊂ R2 be convex and compact. Then Λ∩Π is
a shaped cluster. For 𝜆 ≥ 0 we define the scaled shaped cluster by 𝜆Π := {𝜆𝑥 : 𝑥 ∈ Π}.

By the definition of the Riemann integral and equality of Lebesgue and Riemann
integral in the case of existence, the following statement holds.
Lemma 6.26. Let Π ⊂ R2 be compact and 𝑓 : Π→ R be continuous. Let Π𝜆 ⊂ Π be
a family of finite subsets. Let 𝑉𝜆(𝑥) be the Voronoi cell of 𝑥 with respect to Π𝜆. If

lim
𝜆→∞

sup
𝑥∈Π𝜆

𝐴(𝑉𝜆(𝑥)) = 0,

it is ∫︁
Π
𝑓(𝑥) d𝑥 = lim

𝜆→∞

∑︁
𝑥∈Π𝜆

𝑓(𝑥)𝐴(𝑉𝜆(𝑥)).

We now know that for Π𝜆 = 1
𝜆
Λ∩Π the area of the Voronoi cells not at the boundary

is det(Λ)
𝜆2 . For increasing 𝜆 the boundary cells become irrelevant. Then by Lemma 6.26

it follows ∫︁
Π
𝑓(𝑥) d𝑥 = lim

𝜆→∞

∑︁
𝑥∈Π𝜆

𝑓(𝑥)𝐴(𝑉𝜆(𝑥)) = lim
𝜆→∞

det(Λ)
𝜆2

∑︁
𝑥∈ 1

𝜆
Λ∩Π

𝑓(𝑥). (6.5)

Especially for 𝑓(𝑥) = 1 we get the identity

lim
𝜆→∞

|𝜆Π ∩ Λ|
𝜆2 = lim

𝜆→∞

⃒⃒⃒
Π ∩ 1

𝜆
Λ
⃒⃒⃒

𝜆2 = lim
𝜆→∞

1
𝜆2

∑︁
𝑥∈ 1

𝜆
Λ∩Π

1 = 1
det(Λ)

∫︁
Π

1 d𝑥 = 𝐴(Π)
det(Λ) . (6.6)

We now state the first main result of this section. Intuitively a hexagonal lattice
packing in a shaped cluster can have suboptimal packing density because of poor local
packing density at the boundary of the cluster. However, if we scale the shaped cluster,
the boundary becomes less important. Thus for increasing scaling factor we expect the
packing density of all shaped clusters to converge to the optimal packing density. This
is stated in Theorem 6.27.
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6.3 Asymptotic Analysis of Shaped Clusters

Theorem 6.27 (The asymptotic packing density of shaped clusters is optimal). Let
Π ⊂ R2 be convex and compact. Denote by ℬ𝜆 the packing of unit circles with center
in 𝜆Π ∩ Λ. Denote the packing density of ℬ𝜆 by 𝛿(𝜆Π ∩ Λ). Then

lim
𝜆→∞

𝛿(𝜆Π ∩ Λ) = 𝜋

det(Λ) .

Proof. Denote by conv(ℬ𝜆) the convex hull of the circles in ℬ𝜆. For the packing density
it is by Lemma 6.4

𝛿(𝜆Π ∩ Λ) = |ℬ𝜆| · 𝜋
𝐴(conv(ℬ𝜆)) . (6.7)

With 𝐷 denoting the unit disc it is 𝜆Π ⊂ conv(ℬ𝜆) ⊂ 𝜆Π +𝐷. Then it is

𝐴(𝜆Π) ≤ 𝐴(conv(ℬ𝜆)) ≤ 𝐴(𝜆Π +𝐷) = 𝐴(𝜆Π) + 𝜋

where the last equality holds by convexity of 𝜆Π. It follows for 𝜆→∞

𝐴(𝜆Π)
𝜆2 = 𝐴(Π) ∧ lim

𝜆→∞

𝐴(𝜆Π) + 𝜋

𝜆2 = 𝐴(Π)

=⇒ lim
𝜆→∞

𝐴(conv(ℬ𝜆))
𝜆2 = 𝐴(Π).

Furthermore, it is by (6.6)

lim
𝜆→∞

|ℬ𝜆|
𝜆2 = lim

𝜆→∞

|𝜆Π ∩ Λ|
𝜆2 = 𝐴(Π)

det(Λ) .

So we get by (6.7)

lim
𝜆→∞

𝛿(𝜆Π ∩ Λ) =
lim𝜆→∞

|ℬ𝜆|
𝜆2 · 𝜋

lim𝜆→∞
𝐴(conv(ℬ𝜆))

𝜆2

=
𝐴(Π)

det(Λ)𝜋

𝐴(Π) = 𝜋

det(Λ) .

We know that the wire optimal packings are shaped clusters 𝐴2 ∩ 𝐷𝑟. So, by Theo-
rem 6.27 they have an asymptotic packing density of 𝛿 = 𝜋/

√
12. We already know

that optimal Groemer packings have an asymptotic packing density of 𝛿 = 𝜋/
√

12.
This means that if we optimize the wire length, asymptotically we also optimize the
packing density.

Theorem 6.28. Let Π ⊂ R2 be convex and compact. Then

lim
𝜆→∞

wl(Λ ∩ 𝜆Π)
𝜆4 = 𝐽(Π)

det(Λ) .
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6 Unit Circle Placements

Proof. We first compute with (6.5) and (6.6)

lim
𝜆→∞

𝑅
(︂1
𝜆

Λ ∩ Π
)︂

= lim
𝜆→∞

𝜆2⃒⃒⃒
1
𝜆
Λ ∩ Π

⃒⃒⃒ · 1
𝜆2

∑︁
𝑥∈ 1

𝜆
Λ∩Π

𝑥 = det(Λ)
𝐴(Π)

1
det(Λ)

∫︁
Π
𝑥 d𝑥 = 𝑅(Π).

Then it is by applying (6.5)

lim
𝜆→∞

wl(Λ ∩ 𝜆Π)
𝜆4 = lim

𝜆→∞

1
𝜆2 wl

(︂1
𝜆

Λ ∩ Π
)︂

= lim
𝜆→∞

1
𝜆2

∑︁
𝑥∈ 1

𝜆
Λ∩Π

(︂
𝑥−𝑅

(︂1
𝜆

Λ ∩ Π
)︂)︂2

= 1
det(Λ)

∫︁
Π

(𝑥−𝑅(Π))2 d𝑥 = 𝐽(Π)
det(Λ) .

The following moments of inertia are known from literature. The moment of inertia
of a disc 𝐷 with radius 𝑟 is 𝐽(𝐷) = 1

2𝜋𝑟
4 = 1

2𝜋
𝐴(𝐷)2. For a hexagon Π with given

area the moment of inertia is 𝐽(Π) ≥ 5
18

√
3𝐴(Π)2, where equality holds for the regular

hexagon.

Theorem 6.29. Now denote by 𝑃𝑛 the area optimal packing 𝐴2-packing of 𝑛 circles
and by 𝑄𝑛 the wire length optimal packing for 𝑛 circles. Then

lim
𝑛→∞

𝛿(𝑄𝑛)
𝛿(𝑃𝑛) = 1,

lim sup
𝑛→∞

wl(𝑃𝑛)
wl(𝑄𝑛) ≥

5𝜋
9
√

3
≈ 1, 00767.

Proof. First statement: For all 𝑛 it is 𝛿(𝑃𝑛) ≥ 𝜎 = 𝜋/
√

12. Furthermore, by Theo-
rem 6.21 all 𝑄𝑛 are circular cluster, i.e. with 𝐷 denoting the unit disc the centers of
𝑄𝑛 are 𝜆𝑛𝐷 ∩Λ for some 𝜆𝑛. As 𝑛→∞ it is 𝜆𝑛 →∞ and thus by Theorem 6.27 it is

lim
𝑛→∞

𝛿(𝑄𝑛) = lim
𝜆→∞

𝛿(𝜆𝐷 ∩ Λ) = 𝜋

det(Λ) = 𝜋√
12
.

Hence, it is
𝜋√
12
≤ 𝛿(𝑃𝑛) ≤ 𝛿(𝑄𝑛)→ 𝜋√

12
and the first statement follows.

Second statement: We know by Theorem 6.12 and Theorem 6.13 that for 23
24 of the

natural numbers the area optimal packing 𝑃𝑛 are hexagonal lattice packings. Let 𝐻
be a regular hexagon and denote by 𝑛𝑘 the infinite subsequence where the packing is
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6.3 Asymptotic Analysis of Shaped Clusters

the shaped cluster 𝜇𝑛𝑘
Π ∩ 𝐻. Then as 𝑘 → ∞, it is 𝜇𝑛𝑘

→ ∞. Furthermore, recall
that 𝑄𝑛 is the shaped cluster 𝜆𝑛𝐷 ∩ Λ. Thus, we get

lim sup
𝑛→∞

wl(𝑃𝑛)
wl(𝑄𝑛) ≥ lim

𝑘→∞

wl(𝑃𝑛𝑘
)

wl(𝑄𝑛𝑘
) = lim

𝑘→∞

wl(𝜆𝑛𝑘
𝐻 ∩ Λ)

wl(𝜆𝑛𝑘
𝐷 ∩ Λ)

=
lim𝜆→∞

wl(𝜆𝐻∩Λ)
𝜆4

lim𝜆→∞
wl(𝜆𝐷∩Λ)

𝜆4

= 𝐽(𝐻)
𝐽(𝐷) = 5𝜋

9
√

3
.

Hence, for 𝐴2-packings the wire length optimal packings asymptotically are also opti-
mal in packing density, while the converse is not true, i.e. the packing density optimal
packings asymptotically are not wire length optimal.

Note that it is expected in Conjecture 6.14 that all densest packings are Groemer
packings. Furthermore, in Conjecture 6.16 it is expected that the wire length opti-
mal packings are indeed 𝐴2 packings. Under these assumptions for all (not just 𝐴2)
packings, wire length optimal packings asymptotically are packing density optimal.
Conversely, all packing density optimal packings have inferior wire length.
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7 Circle Placement Problem

Figure 7.1: The circle placement problem is to rotate and translate connected circles
such that they do not overlap and the wire length is minimized.

In this chapter we consider the circle placement problem. For this problem a set of fixed
sized circles is given. Each circle has pins with fixed offset to the circle center. Hence,
the positions of these pins depend on the location and the rotation of the circles. The
pins of the circles are connected by nets. The circle placement problem is then to place
and rotate the circles in the plane, such that they do not overlap and the wire length
is minimized.

The circle placement problem is solved in an initial step of the rounded rectangle
algorithm stated in Chapter 8. In this step, all rectangular components are represented
as circles. The solution of this circle placement step is then used for transforming the
circles to rectangles.

The circle placement problem is related to circle packing and facility layout problems,
which already have been studied in the literature. Several heuristics such as monotonic
basin hopping for circle packing problems or the attractor repeller model for facility
layout problems have been proposed. However, in these approaches the circles centers
are connected and the rotation is disregarded.
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7 Circle Placement Problem

The circle placement problem is highly non-convex. Hence, heuristics are applied to
reach good local optimal solutions. In this chapter we develop such heuristics. In par-
ticular, we extend and improve the attractor repeller model to generate good starting
points for a constrained non-linear program. Furthermore, based on monotonic basin
hopping we develop techniques to overcome local optima in a post-processing step.

In Section 7.1 we formulate the circle placement problem as non-linear program. In
Section 7.2 we survey related results of the literature. To our best knowledge, the circle
placement problem has not been considered in the literature. However, it is related to
the circle packing problem and to facility layout problems. We summarize the known
results of these areas that can be applied to the circle placement problem.

In Section 7.3 we extend the attractor repeller model known for the facility layout
problem. This model yields good results in practice but has the theoretical drawback
of being scaling variant. We propose several models that satisfy the important scaling
invariance property. By comparing our models in Section 7.7.1, we show that one of
our models outperforms the previously known model in terms of running time and
solution quality.

In Section 7.4 we apply the attractor repeller model to the rectangle placement prob-
lem. In Section 7.5 the constrained non-linear program for the circle placement prob-
lem is analyzed. In particular, we show that it satisfies the important Mangasarian-
Fromovitz constraint qualification (MFCQ) but not the linear independence constraint
qualification (LICQ). In Section 7.6 we consider strategies to overcome local optimal
solutions of the circle placement problem. Based on results of Chapter 3 we develop
a monotonic basin hopping and a local search strategy. In Section 7.7.2 we show that
our heuristics improve the solution quality, while the running time is only increased
moderately.

In Section 7.7 we make a detailed numerical analysis of the algorithms proposed in this
chapter. We show that they have moderate running times and lead to good solutions.
Furthermore, we identify the best sequence of heuristics that is used as initial solution
generator in Chapter 8.

7.1 Problem Statement

We now formalize the circle placement problem. Given is:

∙ A set 𝒞 of 𝑛 circles with fixed radii 𝑟𝑗, 𝑗 ∈ 𝒞.

∙ A set 𝒫 of 𝑚 pins. Pin 𝑙 is connected to circle 𝑗(𝑙) and has fixed offset 𝑝𝑙 ∈ C
from its center.

∙ A set 𝒩 of nets. Net 𝑘 has 𝑚𝑘 pins 𝒫𝑘 and weight 𝜇𝑘.
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7.1 Problem Statement

A placement is defined by the location and rotation of each circle. The optimization
problem is to find a placement without overlap such that the wire length is mini-
mized.

Placement Encoding

The location of a circle 𝑗 is defined by the position 𝑐𝑗 ∈ C of its center. The vector of
circle centers is 𝑐 = (𝑐1, . . . , 𝑐𝑛)𝑇 ∈ C𝑛.

We studied different representations of the rotation in Chapter 3. The angle rotation
encodes the rotation of circle 𝑖 by its rotation angle 𝜙𝑖. The Euclidean rotation rep-
resents the rotation of circle 𝑖 by a 𝑧𝑖 ∈ C and adds the constraint |𝑧𝑖| = 1. This
encoding yields an all quadratic program for the circle placement problem. However,
it requires more variables and additional constraints than the angle rotation.

Based on our analysis in Chapter 3, the angle rotation is superior to the Euclidean
rotation in practical implementations. Thus, we focus on the angle rotation in this
chapter. However, sometimes the formulation in the Euclidean rotation is more con-
venient. For given angle rotations 𝜙 = (𝜙1, . . . , 𝜙𝑛) ∈ R𝑛 the Euclidean rotations 𝑧
are given by

𝑧 = (𝑧1, . . . , 𝑧𝑛)𝑇 = (𝚤𝜙1, . . . , 𝚤𝜙𝑛)𝑇 =: exp(𝚤𝜙).

A solution to the circle placement problem is defined by the vector 𝑐 ∈ C𝑛 of circle
centers and 𝜙 ∈ R𝑛 of circle rotations.

Formulation as Non-Linear Program

The circles 𝑖 and 𝑗 do not overlap if |𝑐𝑖 − 𝑐𝑗| ≥ 𝑟𝑖 + 𝑟𝑗. To get a smooth formulation,
in non-linear programs this is often stated as |𝑐𝑖 − 𝑐𝑗|2 ≥ (𝑟𝑖 + 𝑟𝑗)2.

Furthermore, the computation of the wire length is similar to Section 3.1. In order
to keep this chapter self contained, we briefly summarize the computation steps here
that lead to the wire length formulation (3.1).

The absolute position 𝑞𝑙 of pin 𝑙 is given by 𝑞𝑙 = 𝑐𝑗 + 𝑧𝑗𝑝𝑙 with 𝑗 = 𝑗(𝑙). Let Φ =
(𝜑𝑖𝑗) ∈ {0, 1}𝑚×𝑛 be the circle-to-pin matrix, i.e. 𝜑𝑙𝑗 = 1 if and only if pin 𝑙 is on circle
𝑗. Furthermore, let 𝑃 = diag(𝑝1, . . . , 𝑝𝑚) be the diagonal matrix of pin offsets. Then
we get the absolute pin positions

𝑞 = Φ𝑐 + 𝑃Φ𝑧.

By Definition 2.43, the wire length is a positive semidefinite form 𝑞𝐻𝑄𝑞 with 𝑄 ∈
R𝑚×𝑚 of the pin positions. As 𝑞 is linear in (𝑐, 𝑧), the wire length wl(𝑐, 𝑧) is a positive
semidefinite form of (𝑐, 𝑧):
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wl(𝑐, 𝑧) = 𝑐𝐻(Φ𝑇𝑄Φ)𝑐 + 𝑧𝐻(Φ𝑇𝑃𝐻𝑄𝑃Φ)𝑧 + 2ℜ(𝑐𝐻(Φ𝑇𝑄𝑃Φ)𝑧)
= 𝑐𝐻𝐴𝑐 + 𝑧𝐻𝐵𝑧 + ℜ(𝑐𝐻𝑈𝑧)

(7.1)

with

𝐴 = Φ𝑇𝑄Φ ∈ R𝑛×𝑛, 𝐵 = Φ𝑇𝑃𝐻𝑄𝑃Φ ∈ C𝑛×𝑛, 𝑈 = 2Φ𝑇𝑄𝑃Φ ∈ C𝑛×𝑛.

In previous chapters, we formulated the problems in complex variables and used the
straight forward transformation into real variables in the numerical evaluations. This
is not completely trivial in this case. With 𝑐 = 𝑥 + 𝚤𝑦 we explicitly formulate the wire
length wl(𝑐,𝜙) as real function depending on 𝑥,𝑦 and 𝜙. Therefore, split 𝐵 = 𝐵𝑟 +𝚤𝐵𝑖

and 𝑈 = 𝑈𝑟 + 𝚤𝑈𝑖 in real and imaginary part. As 𝐵 is Hermitian, 𝐵𝑟 is symmetric
and 𝐵𝑖 is skew symmetric. As 𝑈 is not Hermitian, 𝑈𝑟 and 𝑈𝑖 are neither symmetric
nor skew symmetric. Furthermore, set cos(𝜙) = (cos(𝜙1), . . . , cos(𝜙𝑛)) and similar
sin(𝜙) = (sin(𝜙1), . . . , sin(𝜙𝑛)). Then

wl(𝑐,𝜙) = wl(𝑥,𝑦,𝜙)
= 𝑥𝑇𝐴𝑥 + 𝑦𝑇𝐴𝑦

+ cos(𝜙)𝑇𝐵𝑟 cos(𝜙) + sin(𝜙)𝑇𝐵𝑟 sin(𝜙) + 2 sin(𝜙)𝑇𝐵𝑖 cos(𝜙)
+ 𝑥𝑇𝑈𝑟 cos(𝜙) + 𝑦𝑇𝑈𝑟 sin(𝜙) + 𝑦𝑇𝑈𝑖 cos(𝜙)− 𝑥𝑇𝑈𝑖 sin(𝜙).

(7.2)

We formulate the circle placement problem as non-linear program 𝐶𝑃𝑃

min wl(𝑐,𝜙)
s. t. (𝑟𝑖 + 𝑟𝑗)2 − |𝑐𝑖 − 𝑐𝑗|2 ≤ 0 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

(7.3)

7.2 Literature Survey

The circle placement problem is non-convex and has many local minima. Any local
optimization algorithm very likely converges to a rather poor local optimum.

There exist optimization techniques based on branch and bound or interval arithmetic
that provably find the global optimal solution to non-convex optimization problems.
However, these approaches have impractical running time for real world problems.
More practical are multiple shooting algorithms. They do not guarantee global opti-
mality but try to overcome poor local optima by doing several local optimization runs
from different starting points. However, the selection of the starting points is crucial.
To use such approaches, the problem structure must be exploited.

The circle placement problem is related to circle packing problems and even closer to
facility layout problems. Therefore, we give a brief survey of the methods known in
literature for these problems.
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7.2.1 Circle Packing

The circle packing problem is to pack circles with given radius into a container (e.g
rectangle, square, circle), such that the circles do not overlap and the container size
is minimized. An often considered special case is the uniform circle packing, where all
circles have the same radius.

Circle packing in different shapes differs only by the container constraints which enforce
the circles to be in the container. For 𝑎 ∈ R let 𝐶(𝑎) be a container increasing with
𝑎, e.g. a square with edge length 𝑎 or a circle with radius 𝑎. Given is a set of 𝑛 circles
with radius 𝑟𝑖, 𝑖 = 1, . . . , 𝑛. The decision variables are the circle centers 𝑐𝑖 ∈ C and the
container size 𝑎. Then the circle packing problem to pack 𝑛 circles with fixed radius
into a the container 𝐶(𝑎) is

min 𝑎

s. t. |𝑐𝑖 − 𝑐𝑗| ≥ 𝑟𝑖 + 𝑟𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (7.4)
𝐷(𝑥𝑖, 𝑟𝑖) ⊂ 𝐶(𝑎), 𝑖 = 1, . . . , 𝑛. (7.5)

While (7.4) enforces the non-overlapping of the circles, (7.5) assure that the circles
are within the container. As the non-overlap constraint (7.4) is not differentiable for
𝑐𝑖 = 𝑐𝑗, it is often formulated as |𝑐𝑖 − 𝑐𝑗|2 ≥ (𝑟𝑖 + 𝑟𝑗)2. This formulation is smooth.

Rare theoretical results exists for the circle packing problem. Even the simpler case
of packing equal circles into the unbounded plane is a theoretically hard task, see
Chapter 6. For equal circle packing of few circles there are some optimality proofs,
usually computer aided by global solvers. See e.g. [Markót; Csendes 2005] for packing
identical circles in a square or [Fodor 1999] and [Fodor 2003] for packing identical circles
in a circle. However, these algorithms are impractical for real world problems.

Most literature focus on heuristic algorithms to find good solutions. Due to the non-
overlapping constraints, circle packing problems have a large number of local optima
which makes it computational intractable to find a global optimum. They have both
a discrete and a continuous structure, in [Addis; Locatelli; Schoen 2008] described
as funnel landscape. Any solution technology that solves circle packing problems effi-
ciently has to exploit this special hybrid structure. For a recent survey see [Castillo;
Kampas; Pintér 2008] and [M’Hallah; Hifi 2009]. We briefly summarize the main ideas
here.

In [Maranas; Floudas; Pardalos 1995] the circle packing problem is solved as a non-
linear global optimization problem. It can also be formulated as the difference of
convex functions, see [Horst; Thoai 1999]. Furthermore, it falls into the class of all
quadratic optimization problems analyzed in [Raber 1999]. However, to efficiently
solve the problem, the geometric structure has to be exploited.

There exist some interesting non-linear reformulations. Several optimization methods
stated in literature rely on the equivalence of the packing problem to the scattering
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problem. The scattering problem is to place 𝑛 points in the unit square such that
the smallest distance between two points is maximized. This problem is equivalent to
minimize a square containing 𝑛 unit circles.

In [Nurmela; Östergård 1997] the unit circle packing problem in a square is considered
as scattering problem. They state it as the problem to minimize

∑︁
1≤𝑖<𝑗≤𝑛

(︃
𝜆

|𝑐𝑖 − 𝑐𝑗|2

)︃𝑚

subject to 𝑐𝑖 being in the unit square. Here 𝜆 is a scaling factor and 𝑚 increased
during the algorithm. As 𝑚 tends to infinity, only the minimal distance of two circles
has influence on the objective. By a trigonometric coordinate transformation, they
transform this problem to an unconstrained non-convex problem and use multiple
shoot approaches.

An idea in [Birgin; Sobral 2008] to improve performance of circle packing formulations
is to replace the constraints (7.4) by the single constraint∑︁

1≤𝑖<𝑗≤𝑛

max(0, (𝑟𝑖 + 𝑟𝑗)2 − |𝑐𝑖 − 𝑐𝑗|2)2 = 0. (7.6)

In theory both equations are equivalent. However, in (7.4) 𝑛(𝑛 − 1)/2 constraints
have to be evaluated, while in (7.6) by sophisticated data structures for reasonable
distributed circles only 𝑂(𝑛) constraints have to be evaluated.

A successful and for the general case most promising approach is monotonic basin
hopping (MBH). This technique has been introduced in [Wales; Doye 1997], and since
then is a well known technique in global optimization. It is is applied to circle packing
problems in [Addis; Locatelli; Schoen 2008] and [Grosso et al. 2010]. It can be applied
to circle packing problems in any kind of container and even be transferred to facility
layout problems.

MBH is essentially a combination of local search and multiple shooting algorithms.
Starting from a local optimum of the circle packing problem, the problem is resolved
starting from a perturbation of the local optimal solution. If this run improves the
objective, the new solution is chosen. Otherwise it is discarded. The algorithm stops
after a fixed number of consecutive fails.

There are different perturbation schemes in the literature. In [Grosso et al. 2010]
the circle center coordinates are randomly shifted in some interval [−Δ,Δ]. There
are several extensions to this perturbation. Sometimes only a subset of the circles is
shifted, sometimes the choice of the perturbation interval depends on the circle radius.
A different rule is proposed in [Addis; Locatelli; Schoen 2008] for unequal circles. They
randomly choose two circles with not too different radii and exchange the centers of
these circles.
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7.2.2 Facility Layout

Facility layout problems are closely related to the circle placement problem. In facility
layout problems, shapes (e.g. rectangles or circles) of fixed size are to be placed in the
plane, such that the shapes do not overlap and a weighted connection between the
shapes is minimized. A recent survey of the literature on facility layout problems is
given in [Castillo; Kampas; Pintér 2008].

Due to the non-overlapping constraints, circle facility layout problems have the same
hybrid discrete and a continuous structure as circle packing problems. Accordingly, sev-
eral discrete and continuous approaches exist. Recent algorithms use a hybrid strategy
of discrete combinatorial and non-linear algorithms.

Facility layout problems for circular objects have been studied in literature. There the
objective usually is the weighted sum of the distance of the circle centers 𝑐𝑖.

Definition 7.1 (Circle Facility Layout Problem). Let 𝑤𝑖𝑗 ≥ 0 be the weight of the
distance of the circles 𝑖 < 𝑗. Let 𝑟𝑖 be the radius of circle 𝑖. Denote 𝑤 = (𝑤𝑖𝑗)1≤𝑖<𝑗≤𝑛.
Then the facility layout problem 𝐹𝐿𝑃 (𝑤, 𝑟) is the non-linear program

min
𝑐

∑︁
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 (7.7)

s. t. |𝑐𝑖 − 𝑐𝑗|2 ≥ 𝑟𝑖 + 𝑟2
𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. (7.8)

In the objective (7.7) and the constraints (7.8) the squared distance |𝑐𝑖 − 𝑐𝑗|2 is used
to make the model smooth.

In [Drezner 1980] the two phase DISCON (DISpersion-CONcentration) algorithm is
considered. In the dispersion phase, starting from all circle centers in the origin, the
circles are dispersed. Using this as an initial solution, in the concentration phase a
dense packing is created.

In [Anjos; Vannelli 2006] the attractor-repeller model is proposed. In this model the
non-overlapping constraints are included as penalty in the objective. Thus for each pair
of circle 𝑖, 𝑗, beside the attractive force 𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 there is an additional repelling
force 𝛼(𝑟𝑖 + 𝑟𝑗)2/ |𝑐𝑖 − 𝑐𝑗|2. This repelling force pushes the circles away from each
other and omits strong overlapping. The attractor repeller model yields good results
in practice. We analyze and improve it in Section 7.3.

7.3 Generalized Attractor Repeller Models

In this section we identify an important theoretical and practical drawback of the
attractor repeller model as stated in [Anjos 2001] and [Anjos; Vannelli 2006]. The
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structure of the solution of the attractor repeller model changes depending on scaling
of circle radii and connection weights.

In Section 7.3.1 we explain the concept of scaling invariance for the facility layout
problem. In Section 7.3.2 we summarize the original attractor repeller model stated in
[Anjos; Vannelli 2006] and show that it is not scaling invariant. In the remaining sec-
tions we propose three scaling invariant modifications of the attractor repeller model.
In Section 7.3.3 the global scaling invariant attractor repeller model is stated. This
model is the smallest modification of the standard model to become scaling invariant.
In Section 7.3.4 we propose the local scaling invariant attractor repeller model. This
model attempts to control the overlapping of the circles by choosing an individual
weight of the repeller force for each pair of circles. In Section 7.3.5 the limited range
attractor repeller model is stated. By limiting the range of the repeller force, this
model avoids that the circles are pushed too far away from each other. In Section 7.3.6
the we compare the different models.

7.3.1 Scaling Invariance

An important property of the facility layout problem 𝐹𝐿𝑃 (𝑤, 𝑟) defined in Defini-
tion 7.1 is its scaling invariance. Denote the objective (7.7) by 𝑓 [𝑤, 𝑟] and the non-
overlapping constraints (7.8) by 𝑔[𝑤, 𝑟].

Geometrically there are two intuitions.

∙ If we scale all connection weights by a common factor 𝜇 ≥ 0, the structure of
the problem does not change. This means, the set of feasible solutions remains
equal and the objective scales by a common factor. More formally

𝑓 [𝜇𝑤, 𝑟](𝑐) = 𝜇𝑓 [𝑤, 𝑟](𝑐), 𝑔[𝜇𝑤, 𝑟](𝑐) = 𝑔[𝑤, 𝑟](𝑐).

∙ If we scale all radii by a common factor 𝛾 ≥ 0, the resulting solutions are
only stretched. So 𝛾𝑐 is feasibly to the stretched problem if 𝑐 is feasible to the
original problem. Furthermore, by this stretching the wire length scales by 𝛾2.
More formally

𝑓 [𝑤, 𝛾𝑟](𝛾𝑐) = 𝛾2𝑓 [𝑤, 𝑟](𝑐), 𝑔[𝑤, 𝛾𝑟](𝛾𝑐) = 𝛾2𝑔[𝑤, 𝑟](𝑐).

In particular, if 𝑐* is the optimal solution to 𝐹𝐿𝑃 (𝑤, 𝑟) with objective value 𝑓 *, then
𝛾𝑐* it the optimal solution to 𝐹𝐿𝑃 (𝜇𝑤, 𝛾𝑟) with objective value 𝜇𝛾2𝑓 *.

In the attractor repeller model the non-overlapping constraints are included as penalty,
called repeller term, in the objective. The facility layout problem 𝐹𝐿𝑃 (𝑤, 𝑟) stated in
Definition 7.1 is replaced by an unconstrained minimization of a function ar[𝑤, 𝑟, 𝛼] :
C𝑛 → R, where 𝛼 is the weight of the repeller term. For larger 𝛼 there is less overlap
of the circles.
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Definition 7.2 (Scaling Invariance). A parametrized family of functions ar[𝑤, 𝑟] is
scaling invariant in connection weight if for 𝜇 ≥ 0

∀𝑐 ∈ C𝑛 : ar[𝜇𝑤, 𝑟](𝑐) = 𝜇 ar[𝑤, 𝑟](𝑐).

We say ar[𝑤, 𝑟, 𝛼] is scaling invariant in size if for 𝛾 ≥ 0

∀𝑐 ∈ C𝑛 : ar[𝑤, 𝛾𝑟](𝛾𝑐) = 𝛾2 ar[𝑤, 𝑟](𝑐).

Especially ar[𝑤, 𝑟] is scaling invariant in connection weight and size if and only if for
𝜇, 𝛾 ≥ 0

∀𝑐 ∈ C𝑛 : ar[𝜇𝑤, 𝛾𝑟](𝛾𝑐) = 𝜇𝛾2 ar[𝑤, 𝑟](𝑐).

We say that an attractor repeller model is scaling invariant, if its objective function is
scaling invariant.

7.3.2 Standard Attractor Repeller Model

In [Anjos 2001] and [Anjos; Vannelli 2006] the attractor repeller model with repelling
force (𝑟𝑖 + 𝑟𝑗)2/ |𝑐𝑖 − 𝑐𝑗|2 is proposed. They consider the unconstrained optimization
problem 𝐴𝑅0(𝑤, 𝑟, 𝛼)

min
𝑐

ar0[𝑤, 𝑟, 𝛼](𝑐) =
∑︁

1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼(𝑟𝑖 + 𝑟𝑗)2

|𝑐𝑖 − 𝑐𝑗|2
. (AR0)

The model (AR0) is neither scaling invariant in connection weight nor in size. For
example, consider two circles connected with weight 𝑤12. Assume 𝛼 = 1. Then ar0 has
its minimum for |𝑐1 − 𝑐2| = 4

√
𝑤12 ·

√
𝑟1 + 𝑟2. So, if we scale the radii by a common

factor, the optimal center distance in (AR0) would not scale by the same factor.
Similar, for greater weights 𝑤12 > 1 the minimum would be attained for smaller values
|𝑐1 − 𝑐2|. We propose advanced models fixing both problems.

7.3.3 Global Invariant Attractor Repeller Model

The attractor part in (AR0) is the connection length and should not be modified.
Instead the lack of scaling invariance in (AR0) can be repaired by modifying the
repeller term.

We define the global scaling invariant attractor repeller model 𝐴𝑅1(𝑤, 𝑟, 𝛼) as

min
𝑐

ar1[𝑤, 𝑟, 𝛼](𝑐) =
∑︁

1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼𝛽[𝑤] (𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2
. (AR1)

The factor 𝛽 only depends on 𝑤. Suitable choices of 𝛽 are discussed in Theorem 7.4.
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Theorem 7.3. The function family ar1 is scaling invariant in size.

Proof. By computation we get

ar1[𝑤, 𝛾𝑟, 𝛼](𝛾𝑐) =
∑︁

1≤𝑖<𝑗≤𝑛

𝛾2𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼𝛽[𝑤]𝛾
4(𝑟𝑖 + 𝑟𝑗)4

𝛾2 |𝑐𝑖 − 𝑐𝑗|2

= 𝛾2 ar1[𝑤, 𝑟, 𝛼](𝑐).

Theorem 7.4. The function family ar1 is scaling invariant in connection weight, if
and only if 𝛽[𝛾𝑤] = 𝛾 · 𝛽[𝑤].

Proof. By computation we get

ar1[𝜇𝑤, 𝑟, 𝛼](𝑐) = 𝜇 ar1[𝑤, 𝑟, 𝛼](𝑐)

⇐⇒
∑︁

1≤𝑖<𝑗≤𝑛

𝜇𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼𝛽[𝜇𝑤] (𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2

= 𝜇
∑︁

1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼𝛽[𝑤] (𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2

⇐⇒ 𝛽[𝜇𝑤]
∑︁

1≤𝑖<𝑗≤𝑛

(𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2
= 𝜇𝛽[𝑤]

∑︁
1≤𝑖<𝑗≤𝑛

(𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2

⇐⇒ 𝛽[𝜇𝑤] = 𝜇𝛽[𝑤].

Corollary 7.5. If 𝛽[𝛾𝑤] = 𝛾 ·𝛽[𝑤], then the attractor repeller model (AR1) is scaling
invariant in size and in connection weight.

There is still some freedom in the choice of 𝛽. Another desired property is stated in
Requirement 7.6.

Requirement 7.6. Consider the facility layout problem for only two circles. Then for
𝛼 = 1 the minimum is attained for touching circles, i.e. for |𝑐1 − 𝑐2| = 𝑟1 +𝑟2. For this
case, the attractor repeller model should have the same optimal solution as the facility
layout problem, i.e. it should have a minimum if and only if |𝑐1 − 𝑐2| = 𝑟1 + 𝑟2.

Lemma 7.7. Consider the modified attractor repeller model (AR1) for the facility
layout problem instance with two circles. The the minimum is attained if and only if
|𝑐1 − 𝑐2| = 4

√︁
𝛼𝛽[𝑤]
𝑤12

(𝑟1 + 𝑟2).
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Proof. For this case, the objective ar1 in (AR1) only depends on the circle center
distance 𝑑 = |𝑐1 − 𝑐2|. We consider ar1 as a function 𝑑. Then

ar1(𝑑) = 𝑤12𝑑
2 + 𝛼𝛽[𝑤] · (𝑟1 + 𝑟2)4

𝑑2

ar′
1(𝑑) = 2𝑤12𝑑− 2𝛼𝛽[𝑤] · (𝑟1 + 𝑟2)4

𝑑3

and thus the minimum is attained for 𝑑 with

ar′
1(𝑑) = 0 ⇐⇒ 𝑤12𝑑

4 = 𝛼𝛽[𝑤](𝑟1 + 𝑟2)4 ⇐⇒ 𝑑4 = 𝛼𝛽[𝑤]
𝑤12

(𝑟1 + 𝑟2)4

⇐⇒ 𝑑 = 4

√︃
𝛼𝛽[𝑤]
𝑤12

(𝑟1 + 𝑟2).

Hence, to achieve Requirement 7.6, for two connected circles it must be 𝛽[𝑤] = 𝑤12.

Examples of normalization factors 𝛽 = 𝛽[𝑤] satisfying the above conditions are, with
|{𝑤𝑖𝑗 > 0}| denoting the number of non-zero 𝑤𝑖𝑗,

𝛽 = max
𝑖<𝑗

𝑤𝑖𝑗, 𝛽 = min
𝑖<𝑗

𝑤𝑖𝑗, 𝛽 = avg
𝑤𝑖𝑗>0

𝑤𝑖𝑗 = 1
|{𝑤𝑖𝑗 > 0}| ·

∑︁
𝑖<𝑗

𝑤𝑖𝑗. (7.9)

With these 𝛽, the attractor repeller model (AR1) is invariant of scaling in size and
connection weight.

We now show the impact of different choices of 𝛽 on the optimal solution. To get
an intuition for the meaning of 𝛽, we only consider pairwise connections and ignore
repelling forces of other circles. Hence, the following results in general do not hold
exactly. This impact is visualized in Figure 7.2.

Figure 7.2a visualizes the choice 𝛽[𝑤] = max𝑤𝑖𝑗 for 𝛼 = 1. The circles with the
strongest connection do exactly not overlap. Circles with weaker connections have a
large distance.

The choice 𝛽[𝑤] = min𝑤𝑖𝑗 is shown in Figure 7.2b for 𝛼 = 1. The circles with the
weakest connections do exactly not overlap, while circles with stronger connections
strongly overlap. However, if not all circles are pairwise connected, it is 𝑤𝑖𝑗 = 0 for
some 𝑖, 𝑗 and thus 𝛽 = 0.

Figure 7.2c shows 𝛽[𝑤] = avg𝑤𝑖𝑗 for 𝛼 = 1. Circles with weak connections are pushed
away from each other, while circles with strong connections overlap. However, the
overlapping for strong connected circles is less than for choosing 𝛽 = min𝑤𝑖𝑗, and
circles with weak connections have smaller distance than for 𝛽 = max𝑤𝑖𝑗. Additionally,
this choice of 𝛽 is more robust to changes of a single net weight.

137



7 Circle Placement Problem

(a) Choice 𝛽 = max 𝑤𝑖𝑗 . For
𝛼 = 1 the circles with the
strongest connection do not
overlap. Circles with weaker
connections have a large
distance.

(b) Choice 𝛽 = min 𝑤𝑖𝑗 . For
𝛼 = 1 the circles with
the weakest connection do
not overlap. Circles with
strong connections overlap
significantly.

(c) Choice 𝛽 = avg 𝑤𝑖𝑗 . For
𝛼 = 1 circles with stronger
connections slightly overlap,
while circles with weaker
connections have a positive
distance.

Figure 7.2: Optimal solutions of the circle repeller model (AR1) for different choices
of 𝛽. The repelling force between 𝐴 and 𝐶 is omitted in this picture. The
connection of the circles 𝐴 and 𝐵 is weak, the connection of 𝐴 and 𝐶 is
strong.

It seems arbitrary to consider only positive weights 𝑤𝑖𝑗 in the last choice for 𝛽 in (7.9).
However, despite the global influence of the repelling function of two circles, repelling
is a local property. One reason is that the repelling force is small for two circles with a
large distance. Furthermore, assume 𝑖 and 𝑗 being two circles close together. Then the
repelling forces on both circles 𝑖 and 𝑗 from all other circles are almost equal. Hence,
by the repelling force of the other circles the circles 𝑖 and 𝑗 are neither pushed away
nor together.

For electronic circuit design most weights 𝑤𝑖𝑗 are zero. In particular, the number of
connections per circle does not increase for circuits with more circles. Instead the
number of non-zero weights grows approximately linearly with the number of circles.
Therefore, taking all weights into account would lead to small values of 𝛽 for circuits
with many circles, and therefore to strong overlapping for 𝛼 = 1.

138



7.3 Generalized Attractor Repeller Models

7.3.4 Local Attractor Repeller Model

In the previous section and Figure 7.2, we have seen how to control the average overlap
of the circles at the optimum by choosing 𝛽. However, it would be desirable to scale
the net weights in Figure 7.2 such that 𝐴 is touching both circles 𝐵 and 𝐶. For this, we
have to scale the repeller forces individually for each circle pair. We introduce scaling
factors 𝛽𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 instead of 𝛽 and get the attractor repeller model

min
𝑐

ar2[𝑤, 𝑟, 𝛼](𝑐) =
∑︁

1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼𝛽𝑖𝑗[𝑤] · (𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2
. (AR2)

To get optimality for both circles touching, in Figure 7.2 we have to choose 𝛽𝑖𝑗 = 𝑤𝑖𝑗.
However, for this choice unconnected circles do not repel each other. Therefore, a
suitable choice is 𝛽𝑖𝑗[𝑤] = 𝑤𝑖𝑗 + 𝛽′[𝑤] with some small 𝛽′[𝑤], e.g.

𝛽𝑖𝑗[𝑤] = 𝑤𝑖𝑗 + 1
𝑛(𝑛+ 1)

∑︁
1≤𝑘<𝑙≤𝑛

𝑤𝑘𝑙.

Theorem 7.8. The attractor repeller model (AR2) is scaling invariant in size and
connection weight.

Proof. It is 𝛽𝑖𝑗[𝜇𝑤] = 𝜇𝛽𝑖𝑗 and thus

ar2[𝜇𝑤, 𝛾𝑟, 𝛼](𝛾𝑐) =
∑︁

1≤𝑖<𝑗≤𝑛

𝜇𝛾2𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼𝛽𝑖𝑗[𝜇𝑤] · 𝛾
4(𝑟𝑖 + 𝑟𝑗)4

𝛾2 |𝑐𝑖 − 𝑐𝑗|2

= 𝜇𝛾2 ar2[𝑤, 𝑟, 𝛼](𝑐).

7.3.5 Limited Range Attractor Repeller Model

The problem in all models considered so far is that we have to increase 𝛼 to enforce the
non-overlapping of all circles. In this process, some circles with weak connections are
pushed far away from each other. One approach to avoid this was shown in Section 7.3.4
by introducing different weights 𝛽𝑖𝑗 depending on the connection strengths.

Another approach would be to stop the repelling force if two circles do not overlap.
For this, we can multiply the repelling force by a step function

Ξ(𝑥;𝑥0) =

⎧⎨⎩1 if 𝑥 ≤ 𝑥0,

0 if 𝑥 > 𝑥0.
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However, the function Ξ(𝑥;𝑥0) is not continuous at 𝑥 = 0. A smooth approximation
of Ξ(𝑥;𝑥0) is

Σ(𝑥; 𝛿, 𝑥0) = 1
1 + exp(𝛿(𝑥− 𝑥0))

.

This function is approximately equal to 1 for values smaller than 𝑥0 and approximately
0 for values greater than 𝑥0. The steepness of the descent at 𝑥0 is controlled by the
parameter 𝛿.

We assume some common 𝛽[𝑤]. Furthermore, the steepness 𝛿[𝑟] depends on the circle
radii. Then the limited range attractor repeller model is

min
𝑐

ar3[𝑤, 𝑟, 𝛼] =
∑︁

1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2

+ 𝛼𝛽[𝑤] ·
(︃

(𝑟𝑖 + 𝑟𝑗)4

|𝑐𝑖 − 𝑐𝑗|2
− 1

)︃
· Σ(|𝑐𝑖 − 𝑐𝑗|2 ; 𝛿[𝑟]; (𝑟𝑖 + 𝑟𝑗)2).

(AR3)

This model is also smooth.

Theorem 7.9. If 𝛽[𝜇𝑤] = 𝜇𝛽[𝑤] and 𝛿[𝛾𝑟] = 1
𝛾2 𝛿[𝑟], then (AR3) is scaling invariant

in connection weight and size.

Proof. For such a 𝛿[𝑤] it is

Σ(|𝛾𝑐𝑖 − 𝛾𝑐𝑗|2 ; 𝛿[𝛾𝑟]; (𝛾𝑟𝑖 + 𝛾𝑟𝑗)2) = 1
1 + exp(𝛿[𝛾𝑟]𝛾2(|𝑐𝑖 − 𝑐𝑗|2 − (𝑟𝑖 + 𝑟𝑗)2))

= Σ(|𝑐𝑖 − 𝑐𝑗|2 ; 𝛿[𝑟]; (𝑟𝑖 + 𝑟𝑗)2).

Immediately we conclude

ar3[𝜇𝑤, 𝛾𝑟, 𝛼](𝛾𝑐) = 𝜇𝛾2 ar3[𝑤, 𝑟, 𝛼](𝑐).

There still is some freedom in choosing 𝛿[𝑟]. An example is

𝛿[𝑟] := 1
avg𝑖∈𝒞 𝑟𝑖

= 𝑛∑︀𝑛
𝑖=1 𝑟𝑖

.

In contrast to the other attractor repeller models, the repelling force stops if two circles
do not overlap. Therefore, circles with weak connections are not pushed to far away
and we can choose larger values of 𝛽[𝑤], i.e. 𝛽[𝑤] = max𝑖<𝑗 𝑤𝑖𝑗.
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(a) Step function for 𝛿 = 10:
Σ(|𝑐𝑖 − 𝑐𝑗 |2 ; 𝛿, (𝑟𝑖 + 𝑟𝑗)2).
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(b) Limited range repeller function
ar3 of (AR3) for 𝛿 = 10.

Figure 7.3: Step function and repeller function of (AR3) plotted over |𝑐𝑖 − 𝑐𝑗|2.

7.3.6 Comparison of the Models

In this section we visualize the different tendencies of the models. A detailed numerical
analysis is done in Section 7.7 for the circle placement problem.

Figure 7.4 visualizes placements for the circuit 𝑉 0093 with all pin offsets set to zero.
To generate a random starting point, we chose the circle centers uniformly of a square
with area equal to the sum of all circle areas, see Section 3.6.1.2 for details. For this
starting point we ran each attractor repeller model once with 𝛼 = 10. Even though
not visualized in the picture, the connections between the large circles are stronger
than most of the other connections.

Figure 7.4a shows the solution for the standard attractor repeller model (AR0). The
large circles strongly overlap while the small circles are widely spread. To get reason-
able non-overlapping of the large circles, 𝛼 must be significantly increased. However,
this leads to very large gaps between the small circles.

Figure 7.4b visualizes the result of the global invariant attractor repeller model (AR1)
with 𝛽 = avg𝑤𝑖𝑗. There is little overlap of the large circles. The smaller circles are
reasonable close together.

Figure 7.4c shows the local invariant model (AR2). Due to the strong connections of
the large circles, their repelling force is also strong, hence they are pushed far away from
each other. Similar, at the left side of the picture, there are strongly connected circles
pushed away from each other by their strong repelling force. The weaker connected
circles are reasonable distributed but still close together in the center of the placement.
This model foils the concept of stronger connected circles being close to each other.

Figure 7.4d visualizes the limited range model (AR3) with 𝛽 = max𝑤𝑖𝑗. The circles are
close together, as their repelling force is stopped for non-overlapping circles. However,
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this is also the disadvantage of the model. Due to the compact placement, the circles
have no space to order themselves according to their connections, and the algorithm
converges to a poor local minimum.

In the numerical analysis in Section 7.7 we show that the limited range model and
the local invariant model are inferior to the standard model while the global invariant
model is superior.

(a) Standard attractor repeller model
(AR0).

(b) Global scaling invariant attractor re-
peller model (AR1) with 𝛽 = avg 𝑤𝑖𝑗 .

(c) Local attractor repeller model (AR2). (d) Limited range attractor repeller
model (AR3).

Figure 7.4: Comparison of the attractor repeller models. The circuit is 𝑉 0093 with all
pin offsets set to 0 and 𝛼 = 10.
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7.4 Initial Solution Generation

In this section we consider the problem to generate an initial solution from where we
start the non-linear program 𝐶𝑃𝑃 stated in (7.3) on page 130. We briefly repeat this
non-linear program here.

Assume the circle-to-pin matrix Φ being fixed. Then 𝐶𝑃𝑃 (𝑄,𝑃, 𝑟) is the non-linear
program

min
𝑐,𝜙

wl[𝑄,𝑃 ](𝑐,𝜙) = 𝑞𝐻𝑄𝑞 with 𝑞 = Φ𝑐 + 𝑃Φ𝑧

s. t. (𝑟𝑖 + 𝑟𝑗)2 − |𝑐𝑖 − 𝑐𝑗|2 ≤ 0,

where 𝑧 = exp(𝚤𝜙), 𝑃 is the diagonal matrix of pin offsets, 𝑟 the circle vector of radii
and 𝑄 defines the wire length.

As this program is highly non-convex, the choice of an appropriate starting point
is crucial for the final solution quality. The main ingredient of the initial solution
generation is the application of the attractor repeller model analyzed and improved in
Section 7.3.

7.4.1 Attractor Repeller Model for the Circle Placement Problem

In this section we replace the circle placement problem by an unconstrained problem
based on the attractor repeller model. While the optimal solution of this new model
might neither be feasible nor optimal to 𝐶𝑃𝑃 , it distributes the circles according to
their connections and gives a good starting point to solve 𝐶𝑃𝑃 with a local non-linear
solver.

Referring to the attractor repeller models for facility layout problems in Section 7.3, we
leave the repeller part unchanged but replace the attractor part by the wire length.

Scaling the net weights by a factor 𝜇 ≥ 0 leads to the problem 𝐶𝑃𝑃 (𝜇𝑄, 𝑃, 𝑟). Scaling
the size by a factor 𝛾 gives the scaled problem 𝐶𝑃𝑃 (𝑄, 𝛾𝑃, 𝛾𝑟). Similar to the facil-
ity layout problem, 𝐶𝑃𝑃 is scaling invariant with respect to size and to connection
weight.

The attractor repeller models of Section 7.3 depend on circle center connections 𝑤 that
do not exist in the circle placement problem. However, a circle placement problem with
all pins in the circle centers is a facility layout problem. We refer to Definition 7.1 of
the facility layout problem as non-linear program 𝐹𝐿𝑃 (𝑤, 𝑟).

Lemma 7.10. The circle placement problem 𝐶𝑃𝑃 (𝑄, 0, 𝑟) is equivalent to the facility
layout problem 𝐹𝐿𝑃 (𝑤, 𝑟) with

𝑤𝑖𝑗 = −𝑎𝑖𝑗 for 𝐴 = (𝑎𝑖𝑗) = Φ𝑇𝑄Φ. (7.10)
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Proof. As the constraints are the same, we only have to prove the equality of the
objectives. For 𝐶𝑃𝑃 (𝑄, 0, 𝑟) it is

wl[𝑄, 0](𝑐,𝜙) = 𝑐𝐻Φ𝑇𝑄Φ𝑐 = 𝑐𝐻𝐴𝑐 =
∑︁
𝑖<𝑗

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 ,

where the last identity follows immediately from Lemma 2.45.

In the following we use 𝑤 as defined in (7.10). In particular, a scaling of 𝑄 is equivalent
to a scaling of 𝑤 by the same factor.

In Section 7.3 for 𝐹𝐿𝑃 (𝑤, 𝑟) we defined four attractor repeller models as uncon-
strained minimization of

min
𝑐

ar𝑡[𝑤, 𝑟, 𝛼](𝑐) =
∑︁
𝑖<𝑗

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼 rep𝑡[𝑤, 𝑟](𝑐), 𝑡 = 0, . . . , 3.

The corresponding attractor repeller models for 𝐶𝑃𝑃 (𝑄,𝑃, 𝑟) are created by replacing
the attractor term by the wire length

min
𝑐,𝜙

ar′
𝑡[𝑄,𝑃, 𝑟, 𝛼](𝑐,𝜙) = wl[𝑄,𝑃 ](𝑐,𝜙) + 𝛼 rep𝑡[𝑤, 𝑟](𝑐), 𝑡 = 0, . . . , 3.

Similar to the attractor repeller model for the facility layout problem, we define the
invariance of this parametric family of functions.

Definition 7.11. A parametrized family of functions ar′[𝑄,𝑃, 𝑟, 𝛼] is scaling invariant
in connection weight and size if and only if for 𝜇, 𝛾 ≥ 0 and each 𝑐 ∈ C𝑛, 𝜙 ∈ R𝑛

ar′[𝜇𝑄, 𝛾𝑃, 𝛾𝑟, 𝛼](𝛾𝑐,𝜙) = 𝜇𝛾2 ar′[𝑄,𝑃, 𝑟, 𝛼](𝑐,𝜙).

Theorem 7.12. The attractor repeller model for the circle placement problem is scal-
ing invariant if and only if the corresponding model for the facility layout problem is
scaling invariant.

Proof. With 𝜇, 𝛾 ≥ 0 we have

wl[𝜇𝑄, 𝛾𝑃 ](𝛾𝑐,𝜙) = (Φ𝛾𝑐 + 𝛾𝑃Φ𝑧)𝐻𝜇𝑄(Φ𝛾𝑐 + 𝑃𝛾Φ𝑧)
= 𝜇𝛾2(Φ𝑐 + 𝑃Φ𝑧)𝐻𝑄(Φ𝑐 + 𝑃Φ𝑧)
= 𝜇𝛾2 wl[𝜇𝑄, 𝛾𝑃 ](𝑐,𝜙).
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We conclude

ar′
𝑡[𝜇𝑄, 𝛾𝑃, 𝛾𝑟, 𝛼](𝛾𝑐,𝜙) = 𝜇𝛾2 ar′

𝑡[𝑄,𝑃, 𝑟, 𝛼](𝑐,𝜙)
⇐⇒ wl[𝜇𝑄, 𝛾𝑃 ](𝛾𝑐,𝜙) + 𝛼 rep𝑡[𝜇𝑤, 𝛾𝑟](𝛾𝑐)

= 𝜇𝛾2(wl[𝑄,𝑃 ](𝑐,𝜙) + 𝛼 rep𝑡[𝑤, 𝑟](𝑐))
⇐⇒ rep𝑡[𝜇𝑤, 𝛾𝑟](𝛾𝑐) = 𝜇𝛾2 rep𝑡[𝑤, 𝑟](𝑐)
⇐⇒

∑︁
𝑖<𝑗

𝜇𝑤𝑖𝑗 |𝛾𝑐𝑖 − 𝛾𝑐𝑗|2 + 𝛼 rep𝑡[𝜇𝑤, 𝛾𝑟](𝛾𝑐)

= 𝜇𝛾2

⎛⎝∑︁
𝑖<𝑗

𝑤𝑖𝑗 |𝑐𝑖 − 𝑐𝑗|2 + 𝛼 rep𝑡[𝑤, 𝑟](𝑐)
⎞⎠

⇐⇒ ar𝑡[𝜇𝑤, 𝛾𝑟, 𝛼](𝛾𝑐) = 𝜇𝛾2 ar𝑡[𝑤, 𝑟](𝑐).

Applying the models of Section 7.3 to the circle placement problem, we get four at-
tractor repeller models for the circle placement problem:

∙ The standard attractor repeller model (𝐶𝑃𝑃 −𝐴𝑅0) it neither scaling invariant
in net weight nor in size.

∙ The global attractor repeller model (𝐶𝑃𝑃 − 𝐴𝑅1) it scaling invariant.

∙ The local attractor repeller model (𝐶𝑃𝑃 − 𝐴𝑅2) it scaling invariant.

∙ The limited range attractor repeller model (𝐶𝑃𝑃 − 𝐴𝑅3) it scaling invariant.

7.4.2 Feasibility Stretching

Some optimization algorithms, e.g. interior point methods, require a feasible starting
point. In principle, we could increase the repeller factor 𝛼 until the circles do not
overlap anymore, i.e. the solution of the attractor repeller model is feasible to 𝐶𝑃𝑃 .
But increasing the repeller factor leads to numerical problems and eventually only
blows up the placement without essentially changing the ordering of the circles.

In this section we show how this increasing of the repeller factor can be avoided.
Instead we can stop the attractor repeller problem when the overlap is sufficiently
small such that it is unlikely that the ordering of the circles changes in further steps.
Then we stretch this solution to obtain feasibility for 𝐶𝑃𝑃 .

Lemma 7.13. Let (𝑐,𝜙) ∈ C𝑛 × R𝑛 and 𝑐𝑖 ̸= 𝑐𝑗 for 𝑖 ̸= 𝑗. Let

𝜆 = max
1≤𝑖<𝑗≤𝑛

𝑟𝑖 + 𝑟𝑗

|𝑐𝑖 − 𝑐𝑗|
.

Denote (𝑐′,𝜙) = (𝛾𝑐,𝜙) for 𝛾 > 0. Then:

145



7 Circle Placement Problem

∙ For 𝛾 < 𝜆 the solution (𝑐′,𝜙) is infeasible to 𝐶𝑃𝑃 .
∙ For 𝛾 = 𝜆 the solution (𝑐′,𝜙) is exactly feasible to 𝐶𝑃𝑃 , i.e. it is feasible and

there are active constrains.
∙ For 𝛾 > 𝜆 the solution (𝑐′,𝜙) is strictly feasible to 𝐶𝑃𝑃 , i.e. it is feasible and

all constraints are inactive.

Proof. Let ℳ =
{︁
(𝑖, 𝑗) : 𝜆 = 𝑟𝑖+𝑟𝑗

|𝑐𝑖−𝑐𝑗 |

}︁
.

Case 1: 𝛾 < 𝜆. Then for (𝑖, 𝑗) ∈ℳ:⃒⃒⃒
𝑐′

𝑖 − 𝑐′
𝑗

⃒⃒⃒
= 𝛾 |𝑐𝑖 − 𝑐𝑗| <

𝑟𝑖 + 𝑟𝑗

|𝑐𝑖 − 𝑐𝑗|
· |𝑐𝑖 − 𝑐𝑗| = 𝑟𝑖 + 𝑟𝑗.

Hence, the circles 𝑖 and 𝑗 overlap, i.e. the solution is infeasible.

Case 2: 𝛾 ≥ 𝜆. Then for all 𝑖, 𝑗 it is⃒⃒⃒
𝑐′

𝑖 − 𝑐′
𝑗

⃒⃒⃒
= 𝛾 |𝑐𝑖 − 𝑐𝑗| ≥

𝑟𝑖 + 𝑟𝑗

|𝑐𝑖 − 𝑐𝑗|
· |𝑐𝑖 − 𝑐𝑗| = 𝑟𝑖 + 𝑟𝑗.

where equality holds if and only if (𝑖, 𝑗) ∈ℳ and 𝛾 = 𝜆.

For a solution where no circles have identical centers, we can scale the solution such
that the circles do not overlap and the scaled solution is feasible. Furthermore, if the
solution is feasible but the distance of the circles is larger than desired, we can scale
down the solution. Finally, by the choice of 𝛾 we can control how far the solution
should be in the interior of the feasible region, i.e. how far the constraints should be
away from being active.

7.5 Finding Local Minima

In this section we consider the problem to solve the non-linear program 𝐶𝑃𝑃 to a local
optimum by a standard non-linear solver. Heuristics to overcome poor local optima
are addressed in Section 7.6. Some of the results are special cases of statements shown
in Chapter 8 for a more general problem. However, to keep the chapters self contained,
we proof them for the circle placement problem here.

In (7.3) we defined the non-linear program 𝐶𝑃𝑃 for the circle placement problem as

min wl(𝑐,𝜙)
s. t. 𝑔𝑖𝑗(𝑐) = (𝑟𝑖 + 𝑟𝑗)2 − |𝑐𝑖 − 𝑐𝑗|2 ≤ 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Despite this problem or related problems have often been considered in literature, we
did not find any theorems about constraint qualifications for this problem.
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Theorem 7.14 (MFCQ is satisfied). Let radii be positive, i.e. for all circles 𝑖 it
is 𝑟𝑖 > 0. Then at each feasible point (𝑐,𝜙) of 𝐶𝑃𝑃 the Mangasarian-Fromovitz
constraint qualification is satisfied.

Proof. As there is no constraint on the rotations 𝜙, we ignore them in this proof and
consider the 𝑔𝑖𝑗 as functions only depending on the circle centers 𝑐. For the derivatives
of the constraints it is

𝜕𝑔𝑖𝑗

𝜕𝑐𝑖

= 𝑐𝑗 − 𝑐𝑖,
𝜕𝑔𝑖𝑗

𝜕𝑐𝑗

= 𝑐𝑖 − 𝑐𝑗,
𝜕𝑔𝑖𝑗

𝜕𝑐𝑘

= 0 for 𝑘 /∈ {𝑖, 𝑗}.

To show MFCQ for each feasible 𝑐, we have to construct a vector 𝑦 ∈ C𝑛 such that
⟨𝑦,∇𝑐𝑔𝑖𝑗(𝑐)⟩R < 0 for all active constraints 𝑔𝑖𝑗 in 𝑐.

Set 𝑦 := 𝑐. Let 𝑔𝑖𝑗 be active in 𝑐, then it is |𝑐𝑖 − 𝑐𝑗|2 = (𝑟𝑖 + 𝑟𝑗)2. So it follows

⟨𝑦,∇𝑐𝑔𝑖𝑗(𝑐)⟩R = ℜ (𝑐𝑖(𝑐𝑗 − 𝑐𝑖) + 𝑐𝑗(𝑐𝑖 − 𝑐𝑗))
= −ℜ ((𝑐𝑖 − 𝑐𝑗)(𝑐𝑖 − 𝑐𝑗))
= − |𝑐𝑖 − 𝑐𝑗|2 = −(𝑟𝑖 + 𝑟𝑗)2 < 0.

Consequential MFCQ is satisfied in each feasible point.

The Mangasarian-Fromovitz constraint qualification ensures that each minimizer is
a KKT point. Furthermore, it is an important necessary and sufficient condition for
many solvers to be convergent to KKT points, see e.g. [Haeser 2010].

This direction 𝑦 has the geometric interpretation shown in Figure 7.5. The rotations 𝜙
are kept fixed (as we ignored them within the proof). The circle centers are stretched
away from the origin. As the radii are fixed, there arises a gap between previously
touching circles. So no more circles are touching, thus all active constraints become
inactive and MFCQ is satisfied.

We might also ask, if stronger constraint qualification such as the linear independence
constraint qualification LICQ holds for this model. However, this is not the case as
we are going to show in the remaining part of this section. For this, we introduce
some theory of planar graphs, for a more detailed survey see [Jungnickel 2005]. Planar
graphs are related to circle packings.

Definition 7.15 (Planar Graph). A graph is planar, if it can be drawn in the plane
such that no two edges overlap.

Definition 7.16 (Maximal Planar Graph). A planar graph is maximal planar if
adding any edge to the graph destroys the planarity.

Theorem 7.17. A maximal planar graph with 𝑛 nodes has 3𝑛− 6 edges.
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(a) Before stretching. (b) After stretching.

Figure 7.5: Geometric meaning of the 𝑦 vector. The rotations remain unchanged, the
circle centers are stretched away from each other.

Figure 7.6: The maximal planar graph with 8 nodes.
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Definition 7.18 (Circle Packing). A circle packing is a placement of circles 1, . . . , 𝑛
with radius 𝑟𝑖 in the plane, such that the circles do not overlap. A circle packing is
defined by the center 𝑐𝑖 of each circle 𝑖.

Definition 7.19 (Intersection Graph). The intersection graph of a circle packing is
a graph 𝐺(𝑉,𝐸), where the set of nodes are the circles 𝑉 = {1, . . . , 𝑛} and for each
pair of touching circles there is an edge, i.e. 𝐸 = {{𝑖, 𝑗} : |𝑐𝑖 − 𝑐𝑗| = 𝑟𝑖 + 𝑟𝑗}. The
intersection graph of a circle packing is simple and planar.

Theorem 7.20 (Koebe-Andreev-Thurston Theorem, [Koebe 1936]). Let 𝐺(𝑉,𝐸) be
a simple planar graph. Then there is a circle packing such that the intersection graph
of the packing is isomorphic to 𝐺.

Based on this we can now show the following theorem.

Theorem 7.21. There are feasible solutions to 𝐶𝑃𝑃 such that LICQ is violated.

Proof. Let 𝐺 be a maximal planar graph with 𝑛 ≥ 7 nodes and thus with 3𝑛−6 edges
(e.g. the graph shown in Figure 7.6).

By Theorem 7.20 there is a circle packing with 𝑛 circles, which intersection graph is
isomorphic to 𝐺. Let their radii be 𝑟 and their centers be 𝑐. With arbitrary rotations
𝜙 this packing is a feasible solution to 𝐶𝑃𝑃 . Furthermore, for this solution there are
3𝑛− 6 active constraints.

However, the gradients of these constrains exist in the 2𝑛-dimensional subspace defined
by the entries of the circle centers. As for 𝑛 ≥ 7 it is 3𝑛 − 6 > 2𝑛, the number of
active constraint gradients exceeds the dimension, so these gradients cannot be linear
independent.

7.6 Overcoming Local Optima

Due to the highly non-convex structure, the algorithm is likely to get trapped in a
local, non-global minimum. In this section we consider heuristics to overcome local
minima.

7.6.1 Equal Circle Swap Local Search (ECSLS)

Equal circle local search is a simple strategy to overcome local optima. It is mainly
based on two observations:

1. For circle placement problems based on electronic circuit design instances, there
are many circles with equal radii.
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2. The circle rotation problem analyzed in Chapter 3 can be solved much more
efficiently than the circle placement problem.

In Chapter 3 we have shown how to find a good local optimal solution of the rotation
problem very quickly. In particular, feasible or almost feasible solutions to the circle
placement problem are very different from the harder problem instances of the circle
rotation problem with very small area factor. For these almost feasible instances,
solving the rotation problem compared to solving the placement problem is faster by
several orders of magnitudes. Thus, we can solve many circle rotation problems within
a circle placement problem.

The proposed local search algorithm iterates over all touching pairs (𝑖, 𝑗) of circles
with equal radii. For each pair the circle centers of 𝑖 and 𝑗 are interchanged and the
circle rotation problem is solved to a local minimum. If the wire length of the created
solution is better than the wire length of the previous solution, the new solution is
accepted.

This progress is repeatedly done for all circle pairs, unless there is no improvement in
the last pass through all circles. It is shown in Algorithm 4.

Algorithm 4: Equal circle swap local search (ECSLS).
Data: starting point 𝑋 = (𝑐,𝜙)

1 enumerate the pairs of touching circles by (𝑖1, 𝑗1), . . . , (𝑖𝑁 , 𝑗𝑁);
2 𝑘 ← 1;
3 𝑛𝑟𝑂𝑓𝐹𝑎𝑖𝑙𝑠← 0;
4 while 𝑛𝑟𝑂𝑓𝐹𝑎𝑖𝑙𝑠 < 𝑁 do
5 𝑋 ′ = interchange 𝑖𝑘 and 𝑗𝑘;
6 optimize rotations of 𝑋 ′;
7 if wl(𝑋 ′) < wl(𝑋) then
8 𝑋 ← 𝑋 ′;
9 𝑛𝑟𝑂𝑓𝐹𝑎𝑖𝑙𝑠← 0;

10 else
11 𝑛𝑟𝑂𝑓𝐹𝑎𝑖𝑙𝑠← 𝑛𝑟𝑂𝑓𝐹𝑎𝑖𝑙𝑠+ 1;
12 𝑘 ← (𝑘 mod 𝑁) + 1;
13 return 𝑋;

Note that this algorithm is guaranteed to terminate, as there are only finitely many
placements and thus the algorithm eventually reaches a placement from where it can-
not improve by a circle swap. However, in practice we introduce a minimal improve-
ment threshold 𝜀 and replace the condition in line 7 by wl(𝑋 ′) ≤ wl(𝑋)− 𝜀.
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7.6.2 Monotonic Basin Hopping (MBH)

Monotonic basin hopping was applied to circle packing problems in [Addis; Locatelli;
Schoen 2008] and [Grosso et al. 2010]. It can be seen as a mixture of a multiple shoot
approach and an iterative local search method. The simple algorithmic idea is shown
in Algorithm 5.

Algorithm 5: Monotonic basin hopping (MBH).
Data: starting point 𝑋
Data: maximal number of tries 𝑚𝑎𝑥𝑇𝑟𝑖𝑒𝑠

1 𝑋 ← 𝐿𝑂(𝑋);
2 𝑘 ← 0;
3 while 𝑘 < 𝑚𝑎𝑥𝑇𝑟𝑖𝑒𝑠 do
4 𝑋 ′ ← 𝑝𝑒𝑟𝑡𝑢𝑟𝑏(𝑋);
5 𝑋 ′′ ← 𝐿𝑆(𝑋 ′);
6 if 𝑓(𝑋 ′′) < 𝑓(𝑋) then
7 𝑘 ← 0;
8 𝑋 ← 𝑋 ′′;
9 else

10 𝑘 ← 𝑘 + 1;

11 return 𝑋;

For the circle placement problem, monotonic basin hopping it is an extension of the
local search method of Section 7.6.1 to circles with different radii. We will now describe
the details of Algorithm 5 for the circle placement problem.

Local Optimization 𝐿𝑂 The local optimization 𝐿𝑂 to find a local optimum from a
given starting point is used in the initial step in line 1 and repeatedly in line 5. In this
step, we solve 𝐶𝑃𝑃 as stated in (7.3) by any local non-linear solver.

Perturbation The perturbation used in line 4 is a crucial ingredient of the algorithm.
It should be chosen in such a way that the algorithm can overcome local optima but the
essential structure of the solution remains. The two strategies described in Section 7.2.1
for circle packing problems do not consider connections between circles and thus are
not well suited for the circle placement problem.

We use the following idea: Let 𝒯 = {(𝑖, 𝑗) : 𝑖 < 𝑗, |𝑐𝑖 − 𝑐𝑗| = 𝑟𝑖 + 𝑟𝑗} be the pairs of
touching circles. Then for a solution (𝑐,𝜙) and two touching circles (𝑖, 𝑗) ∈ 𝒯 the
solution with swapped circles 𝑖 and 𝑗 is (𝑐′,𝜙) with

𝑐′
𝑖 = (𝑟𝑖 − 𝑟𝑗)𝑐𝑖 + 2𝑟𝑗𝑐𝑗

𝑟𝑖 + 𝑟𝑗

, 𝑐′
𝑗 = (𝑟𝑗 − 𝑟𝑖)𝑐𝑗 + 2𝑟𝑖𝑐𝑖

𝑟𝑖 + 𝑟𝑗

, 𝑐′
𝑘 = 𝑐𝑘 for 𝑘 /∈ {𝑖, 𝑗}.
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The geometric meaning of this swapping is shown in Figure 7.7. The rotations are
kept. The circle centers are interchanged such that, seen along the line through the
circle centers, the circles are swapped, i.e. their union occupies the same interval on
the line but the circles have changed sides. This is equal to interchanging the circle
centers (as in [Addis; Locatelli; Schoen 2008] or Section 7.1) if and only if the circles
have the same radius.

Figure 7.7: Geometric meaning of swapping two circles.

The perturbation of 𝑃𝑖𝑗 for (𝑖, 𝑗) ∈ 𝒯 now is defined by the following two steps:

1. Create (𝑐′,𝜙) by swapping circles 𝑖 and 𝑗.
2. Solve the circle rotation problem locally, starting from 𝜙 for fixed centers 𝑐′.

As described in Section 7.1, compared to the rotation problem the placement problem
is much harder to solve and the running time of the algorithm is several orders of
magnitudes slower. Thus, creating a perturbation 𝑃𝑖𝑗 and evaluating the objective
for 𝑃𝑖𝑗 is very fast compared to the local optimization step including the feasibility
restoration. Therefore, in the perturbation step in line 4 all perturbation 𝑃𝑖𝑗, (𝑖, 𝑗) ∈ 𝒯
are performed and the best perturbation is chosen. If the following local optimization
is not successful, this perturbation is marked as failed and in the next iteration the
best remaining perturbation is chosen.

Algorithm 6 shows this monotonic basin hopping for the circle placement problem.

7.6.3 Combination of Monotonic Basin Hopping and Equal Circle
Swap Local Search

In practice this monotonic basin hopping algorithm can be combined with the equal
circle swap local search of Section 7.6.1. Then all perturbations 𝑃𝑖𝑗 of circles 𝑖, 𝑗 with
circles with equal radius are considered first and immediately accepted, if they improve
the wire length. The monotonic basin hopping algorithm is only performed for circles
with different radii. This combination of monotonic basin hopping and equal circle
swap local search is shown in Algorithm 7.
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Algorithm 6: Monotonic basin hopping for the circle placement problem.
Data: local optimal starting point 𝑋 = (𝑐,𝜙)
Data: maximal number of tries 𝑚𝑎𝑥𝑇𝑟𝑖𝑒𝑠

1 𝑘 ← 0;
2 compute 𝒯 ;
3 order 𝑃𝑖𝑗 for (𝑖, 𝑗) ∈ 𝒯 according to their wire length as 𝑃 1, 𝑃 2, . . . ;
4 while 𝑘 < 𝑚𝑎𝑥𝑇𝑟𝑖𝑒𝑠 do
5 𝑋 ′ ← 𝑃 𝑘(𝑋);
6 𝑋 ′′ ← 𝐿𝑂(𝑋 ′);
7 if wl(𝑋 ′′) < wl(𝑋) then
8 𝑋 ← 𝑋 ′′;
9 goto line 1;

10 else
11 𝑘 ← 𝑘 + 1;

12 return 𝑋;

Algorithm 7: Combination of MBH and ECSLS for the circle placement problem.
Data: starting point 𝑋 = (𝑐,𝜙)
Data: maximal number of MBH tries

1 𝑋 ← local optimum starting from 𝑋;
2 loop
3 𝑋 ← 𝐸𝐶𝑆𝐿𝑆(𝑋) ; /* equal circle swap local search */
4 if no improvement in last 𝐸𝐶𝑆𝐿𝑆 and last 𝑀𝐵𝐻 then return 𝑋;
5 𝑋 ←𝑀𝐵𝐻(𝑋) ; /* monotonic basin hopping */
6 if no improvement in last 𝐸𝐶𝑆𝐿𝑆 and last 𝑀𝐵𝐻 then return 𝑋;

7.7 Numerical Results

In this section we evaluate the algorithms stated in this chapter numerically. The
complete algorithm to evaluate is shown in Figure 7.8. It consists of many individual
analyzable and tunable parts. It does not make sense to consider all possible combina-
tions. Therefore, we consider different aspects individually and then choose the best
setting for the analysis of other parts of the algorithm.

In Section 7.7.1 we compare different attractor repeller variants stated in Section 7.4.1
for the circle placement problem. In Section 7.7.1.1 for each attractor repeller model
we choose the best repeller weight 𝛼 and decide if a feasibility stretch is applied.
Based on this choice, in Section 7.7.1.2 we compare the different models. However,
in Section 7.7.1 we do not consider any post processing steps as MBH or ECSLS,
instead we use the result of 𝐶𝑃𝑃 for comparison. The best attractor repeller model
is analyzed in more detail in Section 7.7.1.3.
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Figure 7.8: Algorithm flow of our circle placement algorithm.
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In Section 7.7.2 we analyze different settings for MBH and ECSLS. We use the best
attractor repeller model found in Section 7.7.1 and 𝐶𝑃𝑃 to generate an initial solution
for the post processing steps. To this solution we apply the local search stated in
Section 7.6.1, monotonic basin hopping stated in Section 7.6.2 or their combination.

7.7.1 Attractor Repeller Models

In Section 7.3 we stated four attractor repeller models: the standard AR, the global
invariant AR, the local AR and the limited range AR. Each of these models can be
parametrized by the repeller weight 𝛼. Additionally, a feasibility stretching as described
in Section 7.4.2 can be done after each of these models.

In the following, we present the numerical evaluation of the attractor repeller models
for different settings. We applied them to the problem instances described in Sec-
tion 2.8 where each component is represented as its circumcircle. To run a sufficient
number of test instances, we only considered circuits with 323 or less circles.

For the global invariant attractor repeller model (𝐶𝑃𝑃 − 𝐴𝑅1) we chose

𝛽[𝑤] = avg
𝑤𝑖𝑗>0

𝑤𝑖𝑗 = 1
|{𝑤𝑖𝑗 > 0}| ·

∑︁
𝑖<𝑗

𝑤𝑖𝑗.

For the local attractor repeller model (𝐶𝑃𝑃 − 𝐴𝑅2) we chose

𝛽𝑖𝑗[𝑤] = 𝑤𝑖𝑗 + 1
𝑛(𝑛+ 1)

∑︁
𝑘<𝑙

𝑤𝑘𝑙.

For the limited range attractor repeller model (𝐶𝑃𝑃 −𝐴𝑅3) we used 𝛽 = max𝑤𝑖𝑗.

For each of the circuits, 100 random initial solutions were generated by placing the
circle centers uniformly distributed in a square with area equal to the sum of the circle
areas (i.e. we choose 𝑎𝑓 = 1 in the procedure described in Section 3.6.1.2).

For these initial solutions, we ran all attractor repeller algorithms with 𝛼 ∈ {1, 5, 25}
and with and without feasibility stretching, denoted by S for stretching and N for no
stretching. As the aim of the attractor repeller models is to generate a good initial
solution for the non-linear program 𝐶𝑃𝑃 , we applied 𝐶𝑃𝑃 to the solutions of the at-
tractor repeller models. Additionally we also immediately applied 𝐶𝑃𝑃 to the random
initial solutions.

In total we have six configurations for each of the four attractor repeller models. Con-
sidering also the immediate application of the non-linear program 𝐶𝑃𝑃 to the random
initial solution, there are twenty-five algorithm configurations. As it is confusing to
immediately compare them, we first compare the different configurations for each at-
tractor repeller model and eventually compare the best of these configurations with
each other.
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We ran Ipopt with 𝑡𝑜𝑙 = 10−3 and 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑡𝑜𝑙 = 5 · 10−3 and 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 30000
(which was never reached). Ipopt is an interior point solver with feasibility restoration
techniques. However, it might have problems to converge if the starting point is very
infeasible. Even for feasible starting points, convergence problems occurred. Therefore,
we say a run converged, if both the attractor repeller run and the run the following run
of 𝐶𝑃𝑃 converged, this means they stop with the Ipopt result Solve_Succeeded or
Solved_To_Acceptable_Level. If the run did not converge, usually the run of 𝐶𝑃𝑃
terminated with Infeasible_Problem_Detected or rarely Restoration_Failed. In
less than one percent of the runs the program crashed with insufficient memory when
run from very poor starting points. As for these random initial solutions some attractor
repeller models could not be evaluated, these runs were skipped.

Note that running time and convergence problems are likely to be solver dependent
and might be different with an SQP-solver, while the objective is likely to be similar
for different solvers.

7.7.1.1 Comparison of Different Settings for each AR-Model

For each attractor repeller model we present figures with the Dill instances. These
figures show the number of circles on the 𝑥-axis. On the 𝑦-axis one of the following
values is shown:

Median of the CPU-time in seconds: This time is the total running time of the
attractor repeller run and the following 𝐶𝑃𝑃 -run (random initialization and
stretching are also taken into account but have no practical influence). If a run
has not converged, the CPU time of this run is set to infinity, as we are not
interested in fast but non-converged runs. As for some configurations more than
half of the runs did not converge, the median CPU-time might be infinity. In
these cases we take the maximum of the finite values. However, these points are
marked with a circle while all other points are marked with a full disc.

Objective: For all problem instances we take the best solution found by any of the
algorithms (note that, in contrast to the circle rotation problem, this is not likely
to be the global optimum). In the figure the ratio of the median of the objectives
divided by the best objective is displayed. Similar to the CPU-time, this value is
set to infinity, if the run has not converged. If the median is infinite, the maximal
finite value is taken and this point is marked by a circle.

Ratio of fails: As Ipopt has problems to converge for some configurations, this figure
shows number of non-convergent runs divided by the total number of runs.

We do not include Egrain, Mekas, SapKit and Versiplektor into these figures, as each
of these circuits has different characteristics. Instead the numerical results for these
instances are presented in a tables. However, as these instances are small, all algorithms
work reasonable well. So, in our analysis we focus in the Dill-instances.
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Standard AR Figure 7.9 and Table 7.1 on page 158 show the standard attractor re-
peller model. For larger instances the attractor repeller runs without feasibility stretch-
ing rarely converge. This is due to the strong overlapping of large circles even for larger
repeller factors 𝛼. Comparing the models with stretching, there is only a small differ-
ence between them. It looks like 𝛼 = 1 yields the best objective but has convergence
problems for larger problem instances, while 𝛼 = 5 and 𝛼 = 25 do not show these
difficulties. We decided to use 𝛼 = 5 with stretching as optimal setting.

Global Invariant AR Figure 7.10 and Table 7.2 on page 159 display the global in-
variant attractor repeller model. For this model the setting with 𝛼 = 1 and without
scaling has convergence problems for increasing number of circles. However, for larger
values of 𝛼 also the instances without stretching converge. This seems plausible, as for
the global invariant model all circles are sufficiently non-overlapping even for moder-
ate values of 𝛼. We have chosen 𝛼 = 1 with stretching to be the best setting for this
algorithm.

Local AR The local attractor repeller model is shown in Figure 7.11 and Table 7.3
on page 160. As for the other algorithms, the setting 𝛼 = 1 without stretching leads
to convergence problems for larger instances. However, for all other settings also the
ratio of fails increases. The best convergence is reached for 𝛼 = 25 without stretching.
In contrast to the other algorithms, scaling seems to be unprofitable, especially for
large values of 𝛼. This can be explained as follows. This algorithm pushes the larger
circles away from each other, as their weight of the repelling force is large. So it is very
likely that the need for stretching is due to overlap of smaller circles in the center of
the circuit. In a stretching step the larger circles are pushed even further, which might
lead to numerical issues. However, without stretching, there is only overlap of smaller
circles which might Ipopt be able to repair in a restoration phase. Furthermore, if 𝛼
is small, in the final solution of the attractor repeller run the larger circles are still
reasonable close and thus not pushed to far away by feasibility stretching.

As the ratio of fails increases for all settings, we have chosen 𝛼 = 1 with stretching,
as this yields the significantly best objective values for almost all problem instance
sizes.

Limited Range AR Figure 7.12 and Table 7.4 on page 161 visualize the limited
range attractor repeller model. For this algorithm, the difference between the different
values of 𝛼 is smaller than for the other algorithms. This is due to the fact that
by the large choice of 𝛽 = max𝑤𝑖𝑗 already small values 𝛼 lead to significantly non-
overlapping. However, larger values of 𝛼 do not blow up the placement due to the
limited range of the repelling force. Especially for the objective and the CPU time,
almost all algorithm settings are equal. Due to the lower ratio of fails we have chosen
𝛼 = 5 without stretching to be the best setting for this algorithm.
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7 Circle Placement Problem

Standard Attractor Repeller (AR0)
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Figure 7.9: Standard AR – see Section 7.7.1.1.

Circuit 1-N 1-S 5-N 5-S 25-N 25-S

CPU(s)

E0031 0.265 0.210 0.180 0.180 0.170 0.190
M0057 1.015 1.490 1.120 1.480 1.450 1.565
S0041 3.615 1.550 2.395 1.455 1.475 1.205
V0093 31.255 15.220 15.535 15.630 12.395 15.490

Objective

E0031 1.2181 1.1776 1.2127 1.1979 1.1865 1.1918
M0057 1.1564 1.1840 1.2464 1.2654 1.3268 1.3199
S0041 1.0966 1.0532 1.0739 1.0779 1.0709 1.0799
V0093 1.0679 1.1081 1.0623 1.1080 1.0783 1.1040

Ratio of
Fails

E0031 0.00 0.00 0.00 0.00 0.00 0.00
M0057 0.00 0.00 0.00 0.00 0.00 0.00
S0041 0.03 0.01 0.00 0.01 0.00 0.02
V0093 0.12 0.00 0.00 0.00 0.00 0.00

Table 7.1: Standard AR – see Section 7.7.1.1.
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7.7 Numerical Results

Global Invariant Attractor Repeller (AR1)
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Figure 7.10: Global invariant AR – see Section 7.7.1.1.

Circuit 1-N 1-S 5-N 5-S 25-N 25-S

CPU(s)

E0031 0.160 0.170 0.190 0.180 0.280 0.205
M0057 0.995 1.240 1.145 1.230 1.660 1.230
S0041 0.925 1.160 0.920 1.095 1.135 1.240
V0093 9.510 13.625 12.325 13.445 14.560 13.880

Objective

E0031 1.2134 1.2104 1.2468 1.2432 1.2541 1.2995
M0057 1.1743 1.1885 1.2684 1.2812 1.3364 1.3273
S0041 1.0551 1.0516 1.0498 1.0498 1.0569 1.0570
V0093 1.0620 1.0974 1.1066 1.1217 1.1452 1.1476

Ratio of
Fails

E0031 0.00 0.00 0.00 0.00 0.00 0.00
M0057 0.00 0.00 0.00 0.00 0.00 0.00
S0041 0.00 0.00 0.01 0.02 0.00 0.01
V0093 0.00 0.02 0.02 0.00 0.01 0.00

Table 7.2: Global invariant AR – see Section 7.7.1.1.
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Local Attractor Repeller (AR2)
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Figure 7.11: Local AR – see Section 7.7.1.1.

Circuit 1-N 1-S 5-N 5-S 25-N 25-S

CPU(s)

E0031 0.180 0.220 0.230 0.235 0.290 0.245
M0057 1.290 1.550 1.320 1.610 1.710 1.635
S0041 0.995 1.225 1.020 1.250 1.305 1.290
V0093 16.310 14.325 14.165 16.455 17.360 17.330

Objective

E0031 1.1421 1.1300 1.1700 1.1640 1.1708 1.2024
M0057 1.4097 1.3113 1.4238 1.3466 1.4525 1.4807
S0041 1.0756 1.0718 1.0807 1.0767 1.0868 1.0767
V0093 1.1039 1.0896 1.2259 1.1837 1.8191 1.4909

Ratio of
Fails

E0031 0.00 0.00 0.00 0.00 0.00 0.00
M0057 0.00 0.00 0.00 0.00 0.01 0.00
S0041 0.02 0.00 0.01 0.01 0.03 0.01
V0093 0.02 0.01 0.00 0.03 0.00 0.05

Table 7.3: Local AR – see Section 7.7.1.1.
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Limited Range Attractor Repeller (AR3)
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Figure 7.12: Limited range AR – see Section 7.7.1.1.

Circuit 1-N 1-S 5-N 5-S 25-N 25-S

CPU(s)

E0031 0.420 0.450 0.495 0.470 0.580 0.530
M0057 2.545 2.630 1.625 2.010 1.670 1.560
S0041 1.815 2.190 1.620 2.010 1.820 1.940
V0093 11.820 17.100 11.515 13.630 17.300 15.500

Objective

E0031 2.4054 1.8509 2.5644 2.2014 2.6663 2.2806
M0057 2.8649 2.1750 4.6878 3.6068 4.7866 4.9113
S0041 1.1685 1.1272 1.2158 1.1880 1.2358 1.2205
V0093 2.0174 1.7812 2.1494 2.0897 2.1431 2.1321

Ratio of
Fails

E0031 0.01 0.00 0.00 0.00 0.00 0.00
M0057 0.00 0.00 0.00 0.00 0.00 0.00
S0041 0.00 0.01 0.00 0.00 0.00 0.00
V0093 0.01 0.00 0.00 0.03 0.02 0.00

Table 7.4: Limited range AR – see Section 7.7.1.1.
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7.7.1.2 Comparison of the Different AR-Models

In this section we compare the best tuned settings of all models. Furthermore, we
also include the immediate application of the non-linear program 𝐶𝑃𝑃 to the random
initial solution into the comparison. Recall that we used the following settings:

∙ standard AR: 𝛼 = 5 with stretching
∙ global invariant AR: 𝛼 = 1 with stretching
∙ local AR: 𝛼 = 1 with stretching
∙ limited range AR: 𝛼 = 5 without stretching
∙ 𝐶𝑃𝑃 without AR: 𝐶𝑃𝑃 stated in (7.3) applied to the random initial solution

Figure 7.13 and Table 7.5 on page 163 visualize the comparison of these algorithms.

It can be seen that the final solutions of 𝐶𝑃𝑃 without attractor repeller and the
limited range attractor repeller model yield bad solutions. 𝐶𝑃𝑃 gets stuck in a poor
local optimum. The same is true for the limited range attractor repeller model. We
designed the model to avoid the blow up of the placement. However, this also reduces
the space to sort the circles according to their connections, so this model has the same
problem as the immediate application of 𝐶𝑃𝑃 . Even though not shown in the figures,
in average on converging instances the limited range model and the 𝐶𝑃𝑃 without
AR lead to equally poor solutions. The worse solutions of the 𝐶𝑃𝑃 without AR is
due to the fact that many optimization runs did not converge, while for the limited
range AR most of the runs converged. These convergence problems are also the reason
for the long running time of 𝐶𝑃𝑃 without AR, even if we only solve one non-linear
program in contrast to the attractor repeller models, where two non-linear programs
are solved.

The local attractor repeller model is better than limited range AR and 𝐶𝑃𝑃 without
AR in terms of the objective. However, it has convergence problems for larger instances
and inferior running time to all other attractor repeller models.

The standard AR model and the global invariant AR model are almost similar in terms
of running time and the ratio of fails, also the global invariant AR seems slightly better.
However, the objective obtained by the invariant AR model is superior to all other
models for almost all instances.

This result confirms the impression of Figure 7.4. The global invariant AR yields
an equally degree of non-overlapping of all circles even of different size, while giving
enough space for the circles to sort according to their wiring.
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Figure 7.13: Comparison of AR – see Section 7.7.1.

Circuit Standard Invariant Local Lim. Range No AR

CPU(s)

E0031 0.180 0.170 0.220 0.495 0.570
M0057 1.480 1.240 1.550 1.625 2.705
S0041 1.455 1.160 1.225 1.620 2.580
V0093 15.630 13.625 14.325 11.515 19.875

Objective

E0031 1.1979 1.2104 1.1300 2.5644 2.6430
M0057 1.2654 1.1885 1.3113 4.6878 4.3518
S0041 1.0779 1.0516 1.0718 1.2158 1.2692
V0093 1.1080 1.0974 1.0896 2.1494 2.0508

Ratio of
Fails

E0031 0.00 0.00 0.00 0.00 0.00
M0057 0.00 0.00 0.00 0.00 0.00
S0041 0.01 0.00 0.00 0.00 0.02
V0093 0.00 0.02 0.01 0.00 0.00

Table 7.5: Comparison of AR – see Section 7.7.1.
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7 Circle Placement Problem

7.7.1.3 Detailed Analysis of the Global Invariant AR

We have seen in the previous analysis that the global invariant attractor repeller model
is significantly superior to the other models. Its best parameter choice is 𝛼 = 1 with
stretching. As we use this algorithm in the remaining part of this thesis, we analyze
it in more detail here. Figure 7.14 shows the quantiles of the objective ratio and the
CPU time. While the worst case behavior can be bad, in more than 75% of the runs
both the running time and the final objective are reasonable well, i.e. better than 50%
away from the best found solution.
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Figure 7.14: Quantiles of the global invariant attractor repeller model with 𝛼 = 1 and
stretching. In (a) the running time is plotted over the number of circles. In
(b) the ratio of the solution objectives divided by the best known solution
objective is shown.

7.7.2 Local Search and Monotonic Basin Hopping

In this section we analyze the local search described Section 7.6.1 and the monotonic
basin hopping described in Section 7.6.2.

In Section 7.7.1 we observed that the best attractor repeller model is the global in-
variant model with 𝛼 = 1 and feasibility stretching. Therefore, we use this model to
generate a solution to the circle placement problem. After the attractor repeller run
we apply 𝐶𝑃𝑃 . This result is called the initial solution. Then we apply monotonic
basin hopping, local search or both to this initial solution.
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7.7 Numerical Results

We compare the following algorithmic settings:

∙ ECSLS: Equal circle swap local search is performed.
∙ MBH 5: Monotonic basin hopping with maximum 5 fails is performed.
∙ MBH 15: Monotonic basin hopping with maximum 15 fails is performed.
∙ ECSLS / MBH 5: ECSLS and MBH5 is executed.
∙ ECSLS / MBH 15: ECSLS and MBH15 is executed.

The results are shown in Figure 7.15. In Figure 7.15a it can be seen that the running
time mainly depends on the maximal number of monotonic basin hopping fails. Except
for very small instances, the running time with 15 MBH fails is approximately five
times the initial running time and the running time with 5 MBH fails is approximately
2.5 times the initial running time. If we only use equal circle swap local search, the
running time is nearly not affected.

It is plausible that ECSLS has almost no influence on the running time, since in
ECSLS only the circle rotation problem has to be solved, which is much simpler than
the placement problem. In fact, we have seen in Chapter 3 that in can be done in
milliseconds compared to up to more than thousand seconds for the initial solution
generation.

Despite the very short running time, ECSLS has a large influence on the objective
improvement. This can be seen in Figure 7.15b. The application of ECSLS without any
monotonic basin hopping does not improve the objective much. But the combination
of ECSLS and MBH is significantly superior to just applying MBH. For all but one
instance, ECSLS / MBH 5 is even superior to MBH 15, even though its running time
is only half as long. In summary, the key ingredient for the improvement is monotonic
basin hopping, and an increase of the number of MBH fails improves the final solution
quality. However, ECSLS in combination with MBH significantly improves the final
solution for almost no additional running time.

In Figure 7.15c the relative improvement achieved by the different algorithms for each
run is shown. On the 𝑥-axis the ratio of the initial solution divided by the best known
solution is shown, on the 𝑦-axis the ratio of the final solution divided by the best known
solution. It can be seen that, as intuitively expected, the improvement is larger if the
initial solution is worse. However, for poor initial solutions usually the final solution
is still bad.
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Figure 7.15: Comparison of different configurations of ECSLS and MBH. In (a) on the
𝑥-axis the number of circles is shown, on the 𝑦-axis the median running
time of the total run divided by the running time of the initial solution
generation. In (b) on the 𝑥-axis the number of circles is shown, on the
𝑦-axis the median quotient of the final objective and the initial solution
objective. In (c) on the 𝑥-axis the normalized final solution objective is
shown and on the 𝑦-axis the normalized initial solution objective. The
normalized objective is the objective divided by the best known objective
for this instance.
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7.7 Numerical Results

It is obvious that an increase of the number of MBH fails increases the running time and
improves the solution quality. However, in contrast we could also perform multiple runs
from different starting points. This is the classical contradiction between exploration
and exploitation. Starting several runs without MBH from different starting points
increases the exploration. In contrast, performing a single run with many MBH steps
yields a good exploitation.

As a last result we compare approaches with approximately equal running time. Fig-
ure 7.15a motivates that the following algorithms are likely to have similar running
times.

∙ Run the setting ECSLS five times and take the best solution.
∙ Run the setting ECSLS / MBH 5 twice and take the best solution
∙ Run the setting ECSLS / MBH 15 once.

The result of this comparison is shown in Figure 7.16. While the running times of these
algorithms are approximately equal, for larger instances ECSLS / MBH 5 yields the
best results while ECSLS / MBH 15 yields the worst result. So ECSLS / MBH 5 seems
to be a good trade-off between exploration and exploitation. The algorithm overcomes
local optima by monotonic basin hopping but is fast enough to be run multiple times.
With this algorithm in the median we obtain solutions significantly better than 10%
worse than the best known solution.
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Figure 7.16: Comparison of post processing versus multiple shoot approaches. In (a)
the median CPU time over the number of circles is shown, in (b) the
median of the quotient of the best solution in this run and the best known
objective is shown.
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7 Circle Placement Problem

7.7.3 Conclusion

In this section we evaluated our algorithms for the circle placement problem numeri-
cally. We showed that our proposed global scaling invariant attractor repeller model
is superior to previously existing models in terms of solution quality and running
time. Furthermore, we demonstrated that our proposed local improvement algorithms
equal circle swap local search (ECSLS) and monotonic basin hopping (MBH) are able
to overcome local optima and to improve the solution quality by more than 5% for
moderate increase in running time.

We evaluated the best configuration of our algorithm. The best attractor repeller model
to generate the initial solution for the constrained non-linear optimization problem
𝐶𝑃𝑃 is the global scaling invariant attractor repeller model with repeller weight 𝛼 = 1
and feasibility stretch. The best trade-off between running time and solution quality
for the post processing step is the combination of equal circle swap local search and
monotonic basin hopping with maximum 5 fails.
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8 Rectangle Placement Problem

Figure 8.1: The rectangle placement problem is to rotate and translate connected rect-
angles such that they do not overlap and the wire length is minimized.

In this chapter we consider the rectangle placement problem. For this problem a set
of fixed sized rectangular components is given. Each component has pins with fixed
offset to the center of the component. The pins are connected by nets. The rectangle
placement problem is to place and rotate the components in the plane, such that they
do not overlap and the wire length is minimized.

The rectangle placement problem often appears in the context of electronic circuit
design. The rectangles represent electronic components and the nets represent electric
connections. In particular, the placement step in System-in-Package design is a rectan-
gle placement problem. For System-in-Packages, we have to pack up to approximately
250 heterogeneous components. Rotation and non-overlapping of the components have
to be considered within the algorithm.

Rectangle placement problems have been intensively studied in the literature. However,
most approaches either focus on problem instances with up to 100 components or on
instances with a large number of homogeneous components in VLSI design.
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8 Rectangle Placement Problem

There is a lack of algorithms for placement instances with up to 250 heterogeneous
components. Our proposed rounded rectangle algorithm is an analytic placement ap-
proach. In an initial step, we represent all components as circles and use the results
of Chapter 7 to generate a good initial solution. Within a sequence of non-linear pro-
grams, the algorithm refines the components from circles to rectangles.

In Section 8.1 we formulate the rectangle placement problem. We survey the literature
on this type of problems in Section 8.2. In Section 8.3 we state the rounded rectangle
placement problem (𝑅𝑅𝑃𝑃 ) and show, that it satisfies the Mangasarian-Fromovitz
constraint qualification (MFCQ) at each feasible point. In Section 8.4 we describe the
rounded rectangle algorithm and prove its convergence to a feasible solution for the
rectangle placement problem. Finally, in Section 8.5 we present a detailed numerical
evaluation of the algorithm.

8.1 Problem Statement

We now formalize the rectangle placement problem. Therefore, we first define

C′ := {𝑧 ∈ C : ℜ(𝑧) ≥ ℑ(𝑧) ≥ 0}.

In the rectangle placement problem given is:

∙ A set 𝒞 of 𝑛 rectangular components with fixed sizes 𝑠𝑗 ∈ C′, 𝑗 ∈ 𝒞.

∙ A set 𝒫 of 𝑚 pins. Pin 𝑙 is connected to component 𝑗(𝑙) and has fixed offset
𝑝𝑙 ∈ C from its center.

∙ A set 𝒩 of nets. Net 𝑘 has 𝑚𝑘 pins 𝒫𝑘 and weight 𝜇𝑘.

Similar to Chapter 7, a placement is defined by the locations 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ C𝑛 and
the rotations 𝜙 = (𝜙1, . . . , 𝜙𝑛) ∈ R𝑛 of the components. If convenient, we sometimes
refer to the rotations by

𝑧 = (𝑧1, . . . , 𝑧𝑛) = exp(𝚤𝜙) = (exp(𝚤𝜙1), . . . , exp(𝚤𝜙𝑛)).

The optimization problem is to find a placement with minimal wire length such that
the components do not overlap. Additionally, the rotations might be restricted to
multiples of a fixed angle, e.g. multiples of 𝜋/2. The wire length is defined as in (7.1)
and (7.2). We briefly summarize it here.

The absolute position of pin 𝑙 is 𝑞𝑙 := 𝑐𝑗(𝑙)+𝑧𝑗(𝑙)𝑝𝑙. Denote by Φ = (𝜑𝑖𝑗) ∈ {0, 1}𝑚×𝑛 the
component-to-pin matrix with 𝜑𝑙𝑗 = 1 if and only if pin 𝑙 is on circle 𝑗. Furthermore,
denote by 𝑃 = diag(𝑝1, . . . , 𝑝𝑚) the diagonal matrix of pin offsets. Then with a positive
semidefinite matrix 𝑄 the wire length is

wl(𝑐,𝜙) = 𝑞𝐻𝑄𝑞 with 𝑞 = Φ𝑐 + 𝑃Φ𝑧.
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8.2 Literature Survey

8.2 Literature Survey

In this section we give a survey of the literature on the rectangle placement problem.
This problem naturally arises from electronic circuit design and, hence, much of the
literature is related to this application. This survey is not exhaustive but covers the
main approaches to the rectangle placement problem. We also include literature on
the rectangle placement problem with modified wire length models and on related
problems such as floorplanning. An extensive recent survey over a wide range of these
algorithms in the context of VLSI design is given in [Nam; Cong 2007].

The approaches to the rectangle placement problem can be divided into discrete and
analytical algorithms. Discrete algorithms are mostly based on metaheuristics, mixed
integer programming and constraint programming. Analytical algorithms normally use
formulations as non-linear optimization problem. Furthermore, these algorithms can
be divided in flat and hierarchical placement algorithms. Flat algorithms consider the
problem globally, while hierarchical algorithms separate the circuit via hypergraph
partitioning and place each cluster individually.

There are several metaheuristic approaches to the rectangle placement problem. In
[Murata et al. 1996] a simulated annealing solver based on the placement encoding by
sequence pairs is presented. A survey of simulated annealing algorithms for the rect-
angle placement problem is given in [Wong; Leong; Liu 1988]. In [Areibi; Yang 2004]
a combination of local search and genetic algorithms is applied to solve the rectangle
problem with half perimeter wire length. These heuristics can handle large solution
instances, but for acceptable running time they often yield substandard solution qual-
ity.

In [Faroe; Pisinger; Zachariasen 2003] the guided local search algorithm for the place-
ment problem with half perimeter wire length is proposed. It starts from an initial
solution generated by another optimization method and successively improves this
solution by exploration of its neighborhood.

Also exact optimization methods have been applied to the rectangle placement prob-
lem. For example, in [Onodera; Taniguchi; Tamaru 1991] a branch and bound al-
gorithm using the half perimeter wire length is proposed. This algorithm solves the
problem to global optimality. However, only instances with up to six components can
be solved directly, and larger instances must be decomposed. For practical problem
instances exact optimization algorithms cannot be applied.

In [Berger 2010] the problems to place connected rectangles with respect to the area
usage and the half perimeter wire length are analyzed. Using mixed integer formula-
tions and constraint programming techniques, exact solution methods and heuristics
are proposed. The proposed algorithms yield good solution quality with respect to
packing density and wire length for small to medium sized problem instances, but
they cannot handle instances with 100 or more components in acceptable running
time.

171



8 Rectangle Placement Problem

Analytical algorithms for the placement problem have been studied in the literature.
In [Alon; Ascher 1988] a non-linear penalty approach for the rectangle placement
problem is proposed. This algorithm minimizes the wire length in the clique model and
considers both arbitrary and discrete rotation of the rectangles. The non-overlapping
is computed between the circumcircles of the rectangles and added as penalty term
to the objective. However, transformation from this possibly overlapping placement of
circumcircles to rectangles is not considered.

In [Sha; Dutton 1985] the rectangle placement problem is stated as non-linear problem
including rotation and non-overlapping. They replace the rectangles by rectangles
with half circles on two opposite sides and explicitly formulate the non-overlapping
constraints by the concept of signed distances. However, they only consider connections
between the rectangle centers.

In [Kahng; Reda; Wang 2005] a hierarchical analytic solver for large scale placement
problems is proposed. After clustering the components based on the net structure,
the clusters are placed separately by solving a non-linear program with a quadratic
penalty formulation for the non-overlapping constraints. In [Luo; Anjos; Vannelli 2008]
the floorplanning problem related to the rectangle placement problem is considered. In
this algorithm an attractor repeller model for circular abstractions of the rectangular
blocks is optimized. Keeping the order relations of this placement, the final floorplan is
computed. In [Viswanathan; Chu 2004] an analytical solver for the cell design problem
with a combination of the clique and the star wire length is proposed. However, this
solver does not consider non-overlapping within the non-linear optimization phase,
but generates the non-overlapping placement heuristically in post-processing steps.

8.3 Rounded Rectangle Placement Problem

The rounded rectangle algorithm consists of solving a sequence of non-linear programs
where the components are abstracted as rounded rectangles. In this section we state
and analyze such a non-linear program.

In Section 8.3.1 we state the discrete rotation constraint. In Section 8.3.2 we introduce
the concept of rounded rectangles and formulate the non-overlapping of rounded rect-
angles as non-linear constraints. In Section 8.3.3 we formulate a non-linear program for
the rounded rectangle placement problem and show that it satisfies the Mangasarian-
Fromovitz constraint qualification in each feasible point.

8.3.1 Discrete Rotation

In practice, usually the components may not by rotated by an arbitrary angle. Instead
they must only be rotated by multiples of 𝜋/2 or, less often, 𝜋/4. This constraint can
easily be stated as non-linear equality constraint.
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8.3 Rounded Rectangle Placement Problem

Lemma 8.1. Let 𝜙0 ̸= 0 be fixed. The angle 𝜙 is a multiple of 𝜙0 if and only if

sin
(︃
𝜋
𝜙

𝜙0

)︃
= 0.

In particular, 𝜙 is a multiple of 𝜋
2 if and only if sin(2𝜙) = 0.

Proof. It is sin(𝛼) = 0 if and only if 𝛼 is a multiple of 𝜋. Thus

sin
(︃
𝜋
𝜙

𝜙0

)︃
= 0 ⇐⇒ 𝜋

𝜙

𝜙0
∈ 𝜋Z ⇐⇒ 𝜙 ∈ 𝜙0Z.

With 𝜙0 = 𝜋
2 the second statement follows.

Although easy to formulate, this constraint is problematic for non-linear solvers, as
it leads to a discretized solution space. If this constraint is enforced to be satisfied in
each iteration step, the components are not allowed to rotate at all. Therefore, in the
algorithm this constraint is handled by a penalty approach: Its violation is added as
weighted penalty to the objective. For zero or small penalty weights, the components
can be arbitrarily rotated. By increasing the penalty parameter during the algorithm,
the components are enforced to rotate orthogonally.

8.3.2 Non-Overlapping

The components are rectangles. However, the rotation of rectangles leads to many local
optima, see e.g. Figure 8.2. For an initial placement we approximate the components
by smooth shapes. The simplest and smoothest shape is a circle. If we represent each
component by a circle, rotation is decoupled from non-overlapping. This reduces the
number of local optima. For example, in Figure 8.2 the shown placement is not locally
optimal if the small components are modeled as circles.

Figure 8.2: Local and global optimum of the rectangle placement problem. If the small
components are circles, this placement is no local optimum.

If all components are represented as circles, the problem is equivalent to the circle
placement problem which we have already discussed in Chapter 7 in detail. And in
fact, we solve the circle placement problem to generate a good initial solution for the
rounded rectangle algorithm.
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8 Rectangle Placement Problem

However, a circle is a crude approximation of a rectangle. During the algorithm the
approximation has to be refined. In our algorithm this refinement is done by modeling
the components as rounded rectangles.

Definition 8.2 (Rounded Rectangle). A rounded rectangle 𝑅(𝑟, 𝑤) with 𝑟 ≥ 0 and
𝑤 ∈ C′ is the Minkowski sum of an inner rectangle with width 2ℜ(𝑤) and height 2ℑ(𝑤)
and a disc with radius 𝑟. A rounded rectangle with ℜ(𝑤) > 0 and ℑ(𝑤) = 0 is called
a stadium, a rounded rectangle with 𝑤 = 0 is a circle.

The set 𝑐+ exp(𝚤𝜙)𝑅(𝑟, 𝑤) is a placed rounded rectangle with center 𝑐 and rotation 𝜙.

Definition 8.3 (Degenerated Rounded Rectangle). A rounded rectangle 𝑅(𝑟, 𝑤) is
called degenerated, if 𝑟 = 0 and ℑ(𝑤) = 0.

Figure 8.3: Rounded rectangle 𝑅(𝑟, 𝑤), stadium and circle.

The vertices of the inner rectangle of a rounded rectangle 𝑅(𝑟, 𝑤) are

𝐶(𝑤) = {𝑤, −𝑤, 𝑤, −𝑤}.

In particular, for a stadium there are only two vertices 𝐶(𝑤) = {𝑤,−𝑤} while for a
circle the only vertex is 𝐶(𝑤) = {0}. The vertices of the inner rectangle of the placed
rounded rectangle 𝑐+ exp(𝚤𝜙)𝑅(𝑟, 𝑤) are

𝑐+ exp(𝚤𝜙)𝐶(𝑤) = {𝑐+ exp(𝚤𝜙)𝑤̃ : 𝑤̃ ∈ 𝐶(𝑤)}. (8.1)

We have to assure that two components do not overlap. Two rounded rectangles do
not overlap if the distance of their inner rectangles is greater than the sum of their
radii.

We consider the case where both components 𝑖 and 𝑗 are circles 𝑐𝑖 + exp(𝚤𝜙𝑖)𝑅(𝑟𝑖, 0)
and 𝑐𝑗 + exp(𝚤𝜙𝑗)𝑅(𝑟𝑗, 0) first. Then the two components 𝑖 and 𝑗 do not overlap if and
only if the distance of their centers is greater than the sum of their radii, i.e.

|𝑐𝑖 − 𝑐𝑗|2 ≥ (𝑟𝑖 + 𝑟𝑗)2

where the square is taken for smoothing.
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8.3 Rounded Rectangle Placement Problem

For pairs of general rounded rectangles a similar constraint is possible. Therefore,
we have to compute the distance of the inner rectangles. These functions are more
complicated but explicitly computable. However, they are only once continuously dif-
ferentiable. This approach has been considered in [Sha; Dutton 1985] for stadiums.

Another approach is to introduce separating hyperplanes. By the separating hyper-
plane theorem, two convex and compact sets can be separated by a hyperplane such
that the sets are contained in the different half spaces. We apply this formulation for
the separation of rounded rectangles.

As stated in Definition 2.8, a hyperplane with distance 𝑑 and normal angle 𝜃 in the
complex plane is

𝐻(𝜃, 𝑑) := {𝑥 ∈ C : ℜ(𝑥 · exp(𝚤𝜃)) = 𝑑} = {𝑥 ∈ C : ⟨𝑥, exp(𝚤𝜃)⟩R = 𝑑}.

Lemma 8.4. Let 𝐻 := 𝐻(𝜃, 𝑑) be a hyperplane and 𝐻≤ and 𝐻≥ the corresponding half
spaces. Let 𝑐+exp(𝚤𝜙)𝑅(𝑟, 𝑤) be a placed rounded rectangle. Define with 𝜒 ∈ {−1,+1}

ℎ𝜒
𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃) := 𝑟 + 𝜒(𝑑− ⟨𝑐+ 𝑤̃ exp(𝚤𝜙), exp(𝚤𝜃)⟩R).

Then it holds

𝑅 ⊂ 𝐻≤ ⇐⇒ ℎ−1
𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃) ≤ 0, ∀𝑤̃ ∈ 𝐶(𝑤),

𝑅 ⊂ 𝐻≥ ⇐⇒ ℎ+1
𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃) ≤ 0, ∀𝑤̃ ∈ 𝐶(𝑤).

Figure 8.4: Half space containment of a placed rounded rectangle. The solid line is the
hyperplane 𝐻(𝜃, 𝑑) = {𝑥 : ⟨𝑥, exp(𝚤𝜃)⟩R = 𝑑}, the dashed line 𝐻(𝜃, 𝑑 −
𝑟) = {𝑥 : ⟨𝑥, exp(𝚤𝜃)⟩R = 𝑑 − 𝑟}. The light gray area is the half space
𝐻≤(𝜃, 𝑑) = {𝑥 : ⟨𝑥, exp(𝚤𝜃)⟩R ≤ 𝑑 − 𝑟} and the union of the light and the
dark gray area is the half space 𝐻(𝜃, 𝑑)≤ = {𝑥 : ⟨𝑥, exp(𝚤𝜃)⟩R ≤ 𝑑}.
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8 Rectangle Placement Problem

Proof. We only consider the case 𝜒 = −1. This case is visualized in Figure 8.4.

The placed rounded rectangle 𝑅 is in the half space 𝐻≤(𝜃, 𝑑) if and only if all of its
vertices 𝑐+ exp(𝚤𝜙)𝐶(𝑤) are in the half space 𝐻≤(𝜃, 𝑑− 𝑟). From (8.1) we get for all
𝑤̃ ∈ 𝐶(𝑤):

⟨𝑐+ exp(𝚤𝜙)𝑤̃, exp(𝚤𝜃)⟩R ≤ 𝑑− 𝑟 ⇐⇒ ℎ−1
𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃) ≤ 0.

To get a formulation of these constraints in real variables, we compute

ℎ𝜒
𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃)

= 𝑟 + 𝜒
(︁
𝑑−ℜ(𝑐) cos(𝜃)−ℑ(𝑐) sin(𝜃)−ℜ(𝑤̃) cos(𝜃 − 𝜙)−ℑ(𝑤̃) sin(𝜃 − 𝜙)

)︁
.

For each pair 𝑖 < 𝑗 where not 𝑖 and 𝑗 both are circles, we introduce a hyperplane
𝐻𝑖𝑗 = 𝐻(𝜃𝑖𝑗, 𝑑𝑖𝑗) with normal angle 𝜃𝑖𝑗 and distance 𝑑𝑖𝑗. We want the component 𝑖 to
be in 𝐻𝑖𝑗,≤ and the component 𝑗 to be in 𝐻𝑖𝑗,≥. For all pairs 𝑖 < 𝑗 where not 𝑖 and 𝑗
both are circles, we obtain the non-overlapping constraints

ℎ−1
𝑟𝑖,𝑤̃𝑖

(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0, ∀𝑤̃𝑖 ∈ 𝐶(𝑤𝑖),
ℎ+1

𝑟𝑗 ,𝑤̃𝑗
(𝑐𝑗, 𝜙𝑗, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0, ∀𝑤̃𝑗 ∈ 𝐶(𝑤𝑗).

(8.2)

Remark 8.5. To unify the notation, we make the convention 𝑑𝑗𝑖 = 𝑑𝑖𝑗 and 𝜃𝑗𝑖 = 𝜃𝑖𝑗.
They are not considered as different variables but as different names for the same
variable. Furthermore, define

𝜒𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
−1 if 𝑖 < 𝑗,

0 if 𝑖 = 𝑗,

+1 if 𝑖 > 𝑗.

Then the constraints (8.2) are equivalent to the constraint that for all pairs 𝑖 ̸= 𝑗 where
not 𝑖 and 𝑗 both are circles it holds

ℎ
𝜒𝑖𝑗

𝑟𝑖,𝑤̃𝑖
(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0, ∀𝑤̃𝑖 ∈ 𝐶(𝑤𝑖).

For a rounded rectangle there are four constraints per half space containment, for a
stadium two and for a circle one constraint. Additionally, we have to introduce two
real variables for each hyperplane. However, all constraints are smooth.
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8.3 Rounded Rectangle Placement Problem

8.3.3 Non-Linear Program Formulation

In this section we formulate the rounded rectangle placement problem as non-linear
program. To use this formulation during an iterative algorithm in Section 8.4, we
introduce some additional constraints. Each component 𝑖 is modeled as a rounded
rectangle 𝑅(𝑟𝑖, 𝑤𝑖) with fixed radius 𝑟𝑖 and fixed half size 𝑤𝑖.

The placement is defined by the component centers 𝑐 ∈ C𝑛 and the component rota-
tions 𝜙 ∈ R𝑛. Furthermore, there are the separating hyperplanes for the component
pairs 𝑖 < 𝑗 given by the normal vector angle 𝜃𝑖𝑗 ∈ R and the distance 𝑑𝑖𝑗 ∈ R. Hence,
the vector of decision variables is (𝑐,𝜙,𝑑,𝜃). Some variables, e.g. some angles 𝜙𝑖,
might be fixed. Other variable like the hyperplane variables for pairs of circles might
be not occurring in the problem. These variables can be removed in the practical
implementation. We keep them here for the ease of notation.

Before we state the non-linear program, we introduce the following sets:

∙ The set of components modeled as circles is denoted by 𝒞∘ = {𝑖 ∈ 𝒞 : 𝑤𝑖 = 0}.

∙ The set of component pairs where both components are circles is 𝒢0 := {(𝑖, 𝑗) :
𝑖, 𝑗 ∈ 𝒞∘, 𝑖 < 𝑗}.

∙ The set of component pairs where not both components are circles is 𝒢1 :=
{(𝑖, 𝑗) : 𝑖 /∈ 𝒞∘ ∨ 𝑗 /∈ 𝒞∘, 𝑖 ̸= 𝑗}.

∙ The set of components that must be orthogonal rotated is 𝒞⊥ ⊂ 𝒞.

∙ The set of components 𝑖 with fixed rotation 𝜙𝑓𝑖𝑥
𝑖 is denoted by 𝒞𝑓𝑖𝑥 ⊂ 𝒞. The

vector of fixed rotations is 𝜙𝑓𝑖𝑥. Entries of 𝜙𝑓𝑖𝑥 for non-fixed components are
ignored.

∙ The set of components that should be penalized for non-orthogonal rotation is
denoted by 𝒞𝑟𝑜𝑡 ⊂ 𝒞. The penalty factor is 𝜇𝑟𝑜𝑡.

W.l.o.g. we assume that 𝒞𝑓𝑖𝑥∩𝒞⊥ = ∅. Otherwise, for 𝑖 ∈ 𝒞𝑓𝑖𝑥∩𝒞⊥ either the problem
is infeasible as sin(2𝜙𝑓𝑖𝑥

𝑖 ) ̸= 0 or the orthogonal rotation constraint is redundant.

The set of feasible placements is 𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥). It is given by (𝑐,𝜙,𝑑,𝜃) ∈
𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥) if the following constraints are satisfied:

(𝑟𝑖 + 𝑟𝑗)2 − |𝑐𝑖 − 𝑐𝑗|2 ≤ 0, ∀(𝑖, 𝑗) ∈ 𝒢0 (8.3)
ℎ

𝜒𝑖𝑗

𝑟𝑖,𝑤̃(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0, ∀𝑤̃ ∈ 𝐶(𝑤𝑖), ∀(𝑖, 𝑗) ∈ 𝒢1 (8.4)
sin(2𝜙𝑖) = 0, ∀𝑖 ∈ 𝒞⊥ (8.5)
𝜙𝑖 − 𝜙𝑓𝑖𝑥

𝑖 = 0, ∀𝑖 ∈ 𝒞𝑓𝑖𝑥 (8.6)

Equation (8.3) enforces the non-overlapping of circle pairs, (8.4) separates all other
pairs of components by hyperplanes. Equation (8.5) assures the orthogonal rotation
of components in 𝒞⊥ and (8.6) enforces the fixed rotation of components in 𝒞𝑓𝑖𝑥.
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8 Rectangle Placement Problem

Definition 8.6 (Rounded Rectangle Placement Problem). Denote by wl(𝑐,𝜙) the
wire length as defined in (7.1). Then the rounded rectangle placement problem denoted
by 𝑅𝑅𝑃𝑃 (𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥, 𝒞𝑟𝑜𝑡, 𝜇𝑟𝑜𝑡) is

min wl(𝑐,𝜙) + 𝜇𝑟𝑜𝑡
∑︁

𝑖∈𝒞𝑟𝑜𝑡

sin2(2𝜙𝑖)

s. t. (𝑐,𝜙,𝑑,𝜃) ∈ 𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥).
(𝑅𝑅𝑃𝑃 )

In particular, we can state the rectangle placement problem as rounded rectangle
placement problem.

Definition 8.7 (Rectangle Placement Problem (RPP)). Set 𝑤𝑖 = 𝑠𝑖 and 𝑟𝑖 = 0 for
𝑖 ∈ 𝒞 and 𝒞⊥ = 𝒞 and 𝒞𝑓𝑖𝑥 = 𝒞𝑟𝑜𝑡 = ∅. Then the rectangle placement problem 𝑅𝑃𝑃 is
equivalent to 𝑅𝑅𝑃𝑃 (𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥, 𝒞𝑟𝑜𝑡, 𝜇𝑟𝑜𝑡), i.e.

min wl(𝑐,𝜙)
s. t. (𝑐,𝜙,𝑑,𝜃) ∈ 𝐷(𝑤, 𝑟, 𝒞, ∅, 0).

We show that the problem satisfies the important Mangasarian-Fromovitz constraint
qualification (MFCQ). This is a sufficient condition for many solvers to converge to
Karush-Kuhn-Tucker points, see e.g. [Haeser 2010]. For this proof we need the following
lemma.

Lemma 8.8. Let (𝑐,𝜙,𝑑,𝜃) ∈ 𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥). Let (𝑖, 𝑗) ∈ 𝒢1 and 𝑖 not be
degenerated. Then

𝜒𝑖𝑗(ℜ(𝑐𝑖 exp(−𝚤𝜃𝑖𝑗))− 𝑑𝑖𝑗) > 0.

Proof. Denote 𝑣𝑖𝑗 = exp(𝚤𝜃𝑖𝑗) and 𝑧𝑖 = exp(𝚤𝜙𝑖). By (8.4) we know for feasible points

∀𝑤̃ ∈ 𝐶(𝑤𝑖) : 𝜒(ℜ((𝑐𝑖 + 𝑤̃𝑧𝑖)𝑣𝑖𝑗)− 𝑑𝑖𝑗) ≥ 𝑟𝑖

where the inequality is strict for at least one 𝑤̃ ∈ 𝐶(𝑤𝑖) if component 𝑖 is a proper
rounded rectangle. With ∑︀𝑤̃∈𝐶(𝑤𝑖) 𝑤̃ = 0 it follows

𝜒𝑖𝑗(ℜ(𝑐𝑖𝑣𝑖𝑗)− 𝑑𝑖𝑗) = 𝜒𝑖𝑗

⎛⎝ℜ(𝑐𝑖𝑣𝑖𝑗)− 𝑑𝑖𝑗 + 1
|𝐶(𝑤𝑖)|

ℜ

⎛⎝𝑧𝑖𝑣𝑖𝑗 ·
∑︁

𝑤̃∈𝐶(𝑤𝑖)
𝑤̃

⎞⎠⎞⎠
= 1
|𝐶(𝑤𝑖)|

∑︁
𝑤̃∈𝐶(𝑤𝑖)

𝜒𝑖𝑗ℜ(((𝑐𝑖 + 𝑧𝑖𝑤̃)𝑣𝑖𝑗)− 𝑑𝑖𝑗)

(1)
≥ 1
|𝐶(𝑤𝑖)|

∑︁
𝑤̃∈𝐶(𝑤𝑖)

𝑟𝑖 = 𝑟𝑖

(2)
≥ 0.

If 𝑖 is a circle or a stadium and non-degenerated, it is 𝑟𝑖 > 0 and so in (2) strict
inequality holds. Otherwise 𝑖 is a proper rounded rectangle and in (1) holds strict
inequality. In both cases, in the chain strict inequality holds and so the assertion
follows.
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8.3 Rounded Rectangle Placement Problem

As a generalization of Theorem 7.14, we now show that the Mangasarian-Fromovitz
constraint qualification (MFCQ) is satisfied at each feasible point of 𝑅𝑅𝑃𝑃 .

Theorem 8.9 (MFCQ is satisfied). Let none of the components be degenerated. As-
sume 𝒞⊥ ⊂ 𝒞, 𝒞𝑓𝑖𝑥 ⊂ 𝒞 with 𝒞⊥ ∩ 𝒞𝑓𝑖𝑥 = ∅ and arbitrary 𝜙𝑓𝑖𝑥 ∈ R𝑛. Then MFCQ is
satisfied for each feasible point 𝑥 ∈ 𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥).

Proof. Let 𝑥 = (𝑐,𝜙,𝑑,𝜃) be the vector of decision variables. Set 𝑦 = (𝑐, 0,𝑑, 0).
We show that the equality constraint gradients are linearly independent and for all
equality constraints 𝑔𝑒𝑞 it holds ⟨∇𝑔𝑒𝑞,𝑦⟩R = 0 and for all active inequality constraints
𝑔𝑖𝑛 it is ⟨∇𝑔𝑖𝑛,𝑦⟩R < 0.

Denote (8.3) by 𝑔1
𝑖𝑗, (8.4) by 𝑔2

𝑖𝑗,𝑤̃, (8.5) by 𝑔3
𝑗 and (8.6) by 𝑔4

𝑗 . The set of active
constraints 𝐼1 := {(𝑖, 𝑗) : 𝑔1

𝑖𝑗(𝑥) = 0} and 𝐼2 := {(𝑖, 𝑗, 𝑤̃) : 𝑔2
𝑖𝑗,𝑤̃(𝑥) = 0}.

Regarding the factor 1
2 by Remark 2.15 for real variables, for the non-zero derivatives

of 𝑔1, 𝑔2 with respect to 𝑐 and 𝑑 we get:

𝜕𝑔1
𝑖𝑗

𝜕𝑐𝑖

= 𝑐𝑗 − 𝑐𝑖

𝜕𝑔1
𝑖𝑗

𝜕𝑐𝑗

= 𝑐𝑖 − 𝑐𝑗

𝜕𝑔2
𝑖𝑗,𝑤̃

𝜕𝑐𝑖

= −𝜒𝑖𝑗

2 exp(𝚤𝜃𝑖𝑗)
𝜕𝑔2

𝑖𝑗,𝑤̃

𝜕𝑑𝑖𝑗

= 𝜒𝑖𝑗

2

Equality constraints for different rotations are not related. As 𝒞𝑓𝑖𝑥 ∩ 𝒞⊥ = ∅, the
equality constraint gradients are linear dependent if and only if there is a 𝑗 ∈ 𝒞⊥ such
that ∇𝑔3

𝑗 = 0 or a 𝑗 ∈ 𝒞𝑓𝑖𝑥 such that ∇𝑔4
𝑗 = 0. However, it is ∇𝑔4

𝑗 ̸= 0 everywhere.
Furthermore, for 𝑗 ∈ 𝒞⊥ we have sin(2𝜙𝑗) = 0 and conclude

𝜕𝑔3
𝑗

𝜕𝜙𝑗

= cos(2𝜙𝑗) = ±1 =⇒ ∇𝑔3
𝑗 ̸= 0.

Thus, for all feasible solutions the equality constraint gradients are linear independent.
Furthermore, for the equality constraints it follows immediately

⟨
∇𝑔3

𝑗 ,𝑦
⟩
R

= 0 and⟨
∇𝑔4

𝑗 ,𝑦
⟩
R

= 0 for each 𝑗.

We now consider the inequality constraints. Let (𝑖, 𝑗) ∈ 𝐼1. Then⟨
∇𝑔1

𝑖𝑗,𝑦
⟩
R

= ℜ((𝑐𝑗 − 𝑐𝑖)𝑐𝑖 + (𝑐𝑖 − 𝑐𝑗)𝑐𝑗)

= −ℜ((𝑐𝑗 − 𝑐𝑖)(𝑐𝑗 − 𝑐𝑖)) = − |𝑐𝑖 − 𝑐𝑗|2 = −(𝑟1 + 𝑟2)2 < 0.

Let (𝑖, 𝑗, 𝑤̃) ∈ 𝐼2. By Lemma 8.8 we conclude⟨
∇𝑔2

𝑖𝑗,𝑤̃,𝑦
⟩
R

= −𝜒𝑖𝑗

2 ℜ(𝑐𝑖 exp(𝚤𝜃𝑖𝑗)− 𝑑𝑖𝑗) < 0.

Hence, MFCQ holds at each 𝑥 ∈ 𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥).
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8 Rectangle Placement Problem

Similar to Theorem 7.14 for the circle placement problem, there is an intuitive meaning
of the vector 𝑦. While the rotations 𝜙 of the components and 𝜃 of the hyperplanes
are fixed, the centers 𝑐 and the hyperplane distances 𝑑 are stretched. So actually the
plane is stretched and the fixed sized and fixed rotated components are placed on
their new positions. By this procedure, there arises a gap between previously touching
components and hyperplanes. All active inequality constraints become inactive, i.e.
MFCQ is satisfied. This is visualized in Figure 8.5.

(a) Before stretching. (b) After stretching.

Figure 8.5: Geometric meaning of the 𝑦 vector. The rotations remain unchanged and
the locations are stretched away from each other.

Corollary 8.10. There are feasible solutions to the rounded rectangle placement prob-
lem for which the linear independence constraint qualification (LICQ) is violated.

Proof. If all components are modeled as circles, the rounded rectangle placement
problem is equivalent to the circle placement problem 𝐶𝑃𝑃 stated in (7.3). By Theo-
rem 7.21 for 𝐶𝑃𝑃 there are feasible solutions violating LICQ. Hence, there are feasible
solutions to 𝑅𝑅𝑃𝑃 violating LICQ.

In the vector 𝑦 of Theorem 8.9 the rotations are kept fix. Later in this chapter the
following question arises: If we rotate a component 𝑖 /∈ 𝒞⊥ ∪ 𝒞𝑓𝑖𝑥, can we stretch the
components away from each other to stay feasible? Thus, we are now going to show
that for each feasible point (𝑐,𝜙,𝑑,𝜃) there is a feasible direction (𝑐, 𝛼𝑒𝑖,𝑑, 0) with
some 𝛼 > 0 and 𝑒𝑖 denoting the 𝑖-th unit vector. The factor 𝛼 influences, how much
the component 𝑖 can be rotated for stretching the components away from each other.

We first proof the following extension of Lemma 8.8.

Lemma 8.11. Let (𝑐,𝜙,𝑑,𝜃) ∈ 𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥). Let (𝑖, 𝑗) ∈ 𝒢1.

𝜒𝑖𝑗 (ℜ(𝑐𝑖 exp(𝚤𝜃𝑖𝑗))− 𝑑𝑖𝑗) ≥ 𝑟𝑖 + ℑ(𝑤𝑖).

Proof. We consider 𝜒𝑖𝑗 = −1, the other case is similar. The constraints enforce the
placed rounded rectangle 𝑐𝑖 + exp(𝚤𝜙𝑖)𝑅(𝑟𝑖, 𝑤𝑖) to be contained in the negative half
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8.3 Rounded Rectangle Placement Problem

space of the hyperplane. As ℜ(𝑤𝑖) ≥ ℑ(𝑤𝑖), the hyperplane closest to 𝑐𝑖 satisfying this
condition has distance 𝑟𝑖 + ℑ(𝑤𝑖) from the center 𝑐𝑖. This implies the inequality.

Lemma 8.12. Let none of the components be degenerated. Assume 𝒞⊥ ⊂ 𝒞 and
𝒞𝑓𝑖𝑥 ⊂ 𝒞 with 𝒞⊥ ∩ 𝒞𝑓𝑖𝑥 = ∅ and arbitrary 𝜙𝑓𝑖𝑥 ∈ R𝑛. Let 𝑥 := (𝑐,𝜙,𝑑,𝜃) ∈
𝐷(𝑤, 𝑟, 𝒞⊥, 𝒞𝑓𝑖𝑥,𝜙𝑓𝑖𝑥). Let 𝑙 /∈ 𝒞⊥ ∪ 𝒞𝑓𝑖𝑥.

For each 𝛼 ∈ R with |𝛼| |𝑤𝑙| < 𝑟𝑙 + ℑ(𝑤𝑙) the vector 𝑦 = (𝑐, 𝛼𝑒𝑙,𝑑, 0) is a feasible
direction in 𝑥. Furthermore, such an 𝛼 exists and 𝑥 + 𝛿𝑦 is feasible for all 𝛿 ≥ 0.

Proof. We first show the existence of such an 𝛼. As component 𝑙 is not degenerated,
we have 𝑟𝑙 + ℑ(𝑤𝑙) > 0 and, hence, an 𝛼 with |𝛼| |𝑤𝑙| < 𝑟𝑙 + ℑ(𝑤𝑙) exists.

Denote (8.3) by 𝑔1
𝑖𝑗, (8.4) by 𝑔2

𝑖𝑗,𝑤̃, (8.5) by 𝑔3
𝑗 and (8.6) by 𝑔4

𝑗 . It can be seen that

∀(𝑖, 𝑗) ∈ 𝒢1 : 𝑔1
𝑖𝑗(𝑥 + 𝛿𝑦) = (𝑟1 + 𝑟2)2 − (1 + 𝛿) |𝑐𝑖 − 𝑐𝑗|2 ≤ −𝛿 |𝑐𝑖 − 𝑐𝑗|2 ≤ 0,

∀𝑗 ∈ 𝒞⊥ : 𝑔𝑗
3(𝑥 + 𝛿𝑦) = 𝑔𝑗

3(𝑥) = 0,
∀𝑗 ∈ 𝒞𝑓𝑖𝑥 : 𝑔𝑗

4(𝑥 + 𝛿𝑦) = 𝑔𝑗
4(𝑥) = 0.

It remains to show the statement for 𝑔2
𝑖𝑗,𝑤̃. For ease of notation set 𝑟 = 𝑟𝑖, 𝑐 = 𝑐𝑖,

𝑑 = 𝑑𝑖𝑗, 𝜃 = 𝜃𝑖𝑗 and 𝜒 = 𝜒𝑖𝑗. For 𝑖 ̸= 𝑙 we have by Lemma 8.11

𝑔2
𝑖𝑗,𝑤̃(𝑥 + 𝛿𝑦) = ℎ𝜒

𝑟,𝑤̃((1 + 𝛿)𝑐, 𝜙, (1 + 𝛿)𝑑, 𝜃)
= 𝑟 + 𝜒(𝑑− ⟨𝑐+ 𝑤̃ exp(𝚤𝜙), exp(𝚤𝜃)⟩R) + 𝛿𝜒(𝑑− ⟨𝑐, exp(𝚤𝜃)⟩R)
≤ ℎ𝜒

𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃)− 𝛿(𝑟𝑖 + ℑ(𝑤𝑖)) ≤ 0.

We now consider 𝑖 = 𝑙. Then define

ℎ(𝛿) :=𝑔2
𝑖𝑗,𝑤̃(𝑥 + 𝛿𝑦) = ℎ𝜒

𝑟,𝑤̃((1 + 𝛿)𝑐, 𝜙+ 𝛼𝛿, (1 + 𝛿)𝑑, 𝜃)
=𝑟 + 𝜒(1 + 𝛿)(𝑑−ℜ(𝑐 exp(𝚤𝜃)))− 𝜒ℜ(𝑤̃ exp(𝚤(𝜙− 𝜃)) exp(𝚤𝛼𝛿))

We first show that 𝜕ℎ
𝜕𝛿

(𝛿) ≤ 0 for all 𝛿 > 0. We compute the derivative with Wirtinger
calculus and consider the factor 1

2 for real derivatives by Remark 2.15. Then, applying
Lemma 8.11 we get

𝜕ℎ

𝜕𝛿
(𝛿) = 𝜒

2 (𝑑−ℜ(𝑐 exp(𝚤𝜃))− 𝜒

2𝛼ℑ(𝑤̃ exp(𝚤(𝜙− 𝜃)) exp(𝚤𝛼𝛿))

≤ −1
2(𝑟 + ℑ(𝑤̃)) + 1

2 |𝛼| |𝑤̃| < 0.

Hence, the function ℎ is decreasing for 𝛿 ≥ 0 and we conclude

𝑔2
𝑖𝑗,𝑤̃(𝑥 + 𝛿𝑦) = ℎ(𝛿) ≤ ℎ(0) = 𝑔2

𝑖𝑗,𝑤̃(𝑥) ≤ 0.
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8 Rectangle Placement Problem

8.4 Rounded Rectangle Algorithm

In this section we describe the rounded rectangle algorithm for the rectangle placement
problem. This algorithm consists of solving a sequence of 𝑅𝑅𝑃𝑃 instances. In the
initial phase, all components are abstracted as circles, and we apply the methods
described in Chapter 7 for the circle placement problem to generate a good placement.
In the remaining part of the algorithm, the components are successively transformed
from circles to rectangles.

8.4.1 Description of the Algorithm

For this transformation we exploit characteristics of electronic circuits. In electronic
circuits there are components of very different size. In particular, there are some
large components and many significantly smaller components. The placement of these
larger components has strong impact on the final solution quality, so they should be
placed good. The detailed placement of the smaller components is not required for
the arrangement of the larger components. As the placement of the larger compo-
nents is more important, the components are clustered by their size 𝑠𝑗 into clusters
𝒞𝑡, 𝑡 = 1, . . . , 𝑁 , such that components in the same cluster have similar size. Then the
larger components are transformed from circles to rectangles first.

The algorithms runs through the refinement phases 𝑡 = 1, . . . , 𝑁 , where in the 𝑡-th
phase:

∙ Components 𝑖 ∈ 𝒞𝑡′ , 𝑡′ < 𝑡, are encoded as rectangles with fixed rotation.

∙ Components 𝑖 ∈ 𝒞𝑡′ , 𝑡′ > 𝑡, are encoded as circles.

∙ Components 𝑖 ∈ 𝒞𝑡 are successively transformed from circles to rectangles. Si-
multaneously, the penalty for non-orthogonal rotation is successively increased.

In the remaining part of this section we formalize this algorithm.

Definition 8.13 (𝑁 -clustering). A 𝑁-clustering of the components is a partition of

𝒞 =
𝑁⋃︁

𝑡=1
𝒞𝑡

into disjoint sets, such that for 𝑖 ∈ 𝒞𝑡 and 𝑗 ∈ 𝒞𝑡′ with 𝑡 < 𝑡′ it is |𝑠𝑖| ≤ |𝑠𝑗|.

We define the sets
𝒞<𝑡 =

⋃︁
𝑙<𝑡

𝒞𝑙, 𝒞>𝑡 =
⋃︁
𝑙>𝑡

𝒞𝑙.
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8.4 Rounded Rectangle Algorithm

Definition 8.14. Let 𝑠 ∈ C′. Then 𝑅𝜆(𝑠) for 𝜆 ∈ [0, 1] is defined to be the rounded
rectangle with half size 𝜆𝑠 and radius (1− 𝜆) |𝑠|, i.e.

𝑅𝜆(𝑠) := 𝑅((1− 𝜆) |𝑠| , 𝜆𝑠).

In particular, 𝑅1(𝑠) is the rectangle with half size 𝑠 and 𝑅0(𝑠) is the enclosing circle
of this rectangle.

We now state the problem that has to be solved within the steps of the rounded rect-
angle algorithm. In the 𝑡-th refinement phase, the components 𝑖 ∈ 𝒞<𝑡 are rectangles
𝑅1(𝑠𝑖) and components 𝑖 ∈ 𝒞>𝑡 are circles 𝑅0(𝑠𝑖), while components 𝑖 ∈ 𝒞𝑡 are rounded
rectangles 𝑅𝜆(𝑠𝑖) for some 𝜆 ∈ [0, 1]. This yields (𝑟,𝑤) defined by

(𝑟𝑖, 𝑤𝑖) =

⎧⎪⎪⎨⎪⎪⎩
(0, 𝑠𝑖) 𝑖 ∈ 𝒞<𝑡,

((1− 𝜆) |𝑠𝑖| , 𝜆𝑠𝑖) 𝑖 ∈ 𝒞𝑡,

(|𝑠𝑖| , 0) 𝑖 ∈ 𝒞>𝑡.

The already fixed rotations are 𝜙𝑓𝑖𝑥 and the penalty parameter is 𝜇 := 𝜇𝑟𝑜𝑡. Then
the problem 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥) to solve is a rounded rectangle placement problem with
𝒞⊥ = ∅, fixed components 𝒞𝑓𝑖𝑥 = 𝒞<𝑡. The components with rotation penalty are
𝒞𝑟𝑜𝑡 = 𝒞𝑡. Hence, it is

𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥) = 𝑅𝑅𝑃𝑃 (𝑤, 𝑟, ∅, 𝒞<𝑡,𝜙
𝑓𝑖𝑥, 𝒞𝑡, 𝜇). (8.7)

This gives with 𝒢0 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝒞>𝑡, 𝑖 < 𝑗} and 𝒢1 := {(𝑖, 𝑗) : 𝑖 ∈ 𝒞≤𝑡 ∨ 𝑗 ∈ 𝒞≤𝑡, 𝑖 ̸=
𝑗} for 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥) the formulation

min wl(𝑐,𝜙) + 𝜇
∑︁
𝑖∈𝒞𝑡

sin2(2𝜙𝑖) (8.8)

s. t. (𝑟𝑖 + 𝑟𝑗)2 − |𝑐𝑖 − 𝑐𝑗|2 ≤ 0, ∀(𝑖, 𝑗) ∈ 𝒢0 (8.9)
ℎ

𝜒𝑖𝑗

𝑟𝑖,𝑤̃(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0, ∀𝑤̃ ∈ 𝐶(𝑤𝑖), ∀(𝑖, 𝑗) ∈ 𝒢1 (8.10)
𝜙𝑖 − 𝜙𝑓𝑖𝑥

𝑖 = 0, ∀𝑖 ∈ 𝒞<𝑡 (8.11)

The rounded rectangle algorithm stated in Algorithm 8 consists of solving a sequence
of the rounded rectangle placement problems defined in (8.7).

We explain the steps of the algorithm here.

∙ In line 1 the components are clustered by their size.

∙ In line 2 the components are abstracted as circles and by the methods of Chap-
ter 7 for the circle placement problem an initial placement is generated.

∙ In the initialization in line 3 no rotations are fixed and, as all components are
circles, the hyperplanes are undefined. Thus all these values can be set arbitrary,
e.g. to zero.
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Algorithm 8: Rounded rectangle algorithm.
Data: Number of clusters 𝑁

1 (𝒞1, . . . 𝒞𝑁)← clustering of the components;
2 (𝑐,𝜙)← solution of the circle placement problem;
3 𝜙𝑓𝑖𝑥 ← 0; 𝑑← 0; 𝜃 ← 0;
4 for 𝑡 = 1 to 𝑁 do
5 for 𝑖 ∈ 𝒞𝑡−1 do 𝜙𝑓𝑖𝑥

𝑖 ← 𝜙𝑖;
6 for (𝑖, 𝑗) with 𝑖 < 𝑗 do
7 if 𝑖 ∈ 𝒞𝑡 ∨ 𝑗 ∈ 𝒞𝑡 and not 𝑖 ∈ 𝒞<𝑡 ∨ 𝑗 ∈ 𝒞<𝑡 then
8 compute 𝜃𝑖𝑗 and 𝑑𝑖𝑗;

9 for (𝜆, 𝜇) from (0, 0) to (1,∞) do
10 (𝑐,𝜙,𝑑,𝜃)← local optimum of 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥);

11 return (𝑐,𝜙);

∙ In line 5 the rotations of the components that have been transformed to rectan-
gles in the previous iteration are fixed. As fixed rotations are never changed in
this algorithm, by this line during the algorithm the rotations of all components
in 𝒞<𝑡 are fixed.

∙ In line 6 to line 8 the new required hyperplanes are computed. The condition
in line 7 is satisfied if and only if both components 𝑖 and 𝑗 have been circles
in previous phases but at least one of them is no circle in this phase. For these
pairs, the separating hyperplane has not been computed. To generate a feasible
start point for the next solution, the hyperplane is computed in line 8 as shown
in Lemma 8.15.

∙ In the loop in line 9 and line 10 the sequence of 𝑅𝑅𝑃𝑃 instances is solved. In
this process, the rotation penalty 𝜇 is increased to ∞ and by increasing 𝜆 from
0 to 1 the components in 𝒞𝑡 are transformed form circles to rectangles. It is not
specified, how (𝜆, 𝜇) increases to (1,∞). In our numerical evaluation, we use
a fixed non-decreasing sequence of tuples. In Section 8.4.2 we show that each
𝑅𝑅𝑃𝑃 in line 10 is started from a feasible point.

The hyperplanes between two circles in line 8 are computed by the following lemma.

Lemma 8.15. Let 𝑅1 be the circle with radius 𝑟1 and center 𝑐1, and 𝑅2 the circle with
radius 𝑟2 and center 𝑐2. Set

𝑢 = 𝑟1𝑐2 + 𝑟2𝑐1

𝑟1 + 𝑟2
, 𝜃 = arg(𝑐2 − 𝑐1), 𝑑 = ⟨exp(𝚤𝜃), 𝑢⟩R , 𝐻 = 𝐻(𝜃, 𝑑).

Then the rectangles are contained in the different half spaces defined by 𝐻. More
formally we have 𝑅1 ⊂ 𝐻≤ and 𝑅2 ⊂ 𝐻≥, or equivalently

ℎ−1
𝑟1,0(𝑐1, 𝜙1, 𝑑, 𝜃) ≤ 0, ℎ+1

𝑟2,0(𝑐2, 𝜙2, 𝑑, 𝜃) ≤ 0.
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Proof. We only show the statement for ℎ−1, the proof for ℎ+1 is similar. It is

𝜃 = arg(𝑐2 − 𝑐1) =⇒ exp(−𝚤𝜃) = 𝑐2 − 𝑐1

|𝑐2 − 𝑐1|
.

As the circles are non-overlapping, we know |𝑐1 − 𝑐2| ≥ 𝑟1 + 𝑟2. Then we get

ℎ−1
𝑟1,0(𝑐1, 𝜙1, 𝑑, 𝜃) = 𝑟1 − 𝑑+ ℜ(𝑐1 exp(−𝚤𝜃))

= 𝑟1 −ℜ
(︃
𝑟1𝑐2 + 𝑟2𝑐1

𝑟1 + 𝑟2
· 𝑐2 − 𝑐1

|𝑐2 − 𝑐1|

)︃
+ ℜ

(︃
𝑐1 ·

𝑐2 − 𝑐1

|𝑐2 − 𝑐1|

)︃

= 𝑟1

(︃
1− |𝑐2 − 𝑐1|

𝑟1 + 𝑟2

)︃
≤ 0.

8.4.2 Each Starting Point is Feasible

We now show that in each optimization step in line 10 the initial solution is feasible to
the problem. First in Lemma 8.16 we give a geometric intuition, as we show that for
increasing 𝜆 the rounded rectangles 𝑅𝜆 are getting smaller. A rigorous proof is given
in Theorem 8.18.

Lemma 8.16. Let 𝑠 ∈ C′ and 0 ≤ 𝜆 < 𝜆′ ≤ 1. Then 𝑅𝜆′(𝑠) ( 𝑅𝜆(𝑠).

Proof. By symmetry, w.l.o.g. it is sufficient to show the statement within the first
quadrant of the Euclidean plane. This is visualized in Figure 8.6.

Figure 8.6: Containment of rounded rectangles 𝑅𝜆′(𝑠) and 𝑅𝜆(𝑠) for 0 ≤ 𝜆 < 𝜆′ ≤ 1.

Except for the circular part, the strict containment is obvious. So, with 𝐷(𝑟, 𝑐) being
the disc of radius 𝑟 around 𝑐, it is sufficient to show that

𝐷((1− 𝜆′) |𝑠| , 𝜇𝑠) ⊂ 𝐷((1− 𝜆) |𝑠| , 𝜆𝑠).
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This statement follows by

𝑥 ∈ 𝐷((1− 𝜆′) |𝑠| , 𝜇𝑠)
=⇒ |𝑥− 𝜆′𝑠| ≤ (1− 𝜆′) |𝑠|
=⇒ |𝑥− 𝜆𝑠| ≤ |𝑥− 𝜆′𝑠|+ |(𝜆′ − 𝜆)𝑠| ≤ (1− 𝜆′) |𝑠|+ (𝜆′ − 𝜆) |𝑠| = (1− 𝜆) |𝑠|
=⇒ 𝑥 ∈ 𝐷((1− 𝜆) |𝑠| , 𝜆𝑠).

Theorem 8.18 shows that for fixed 𝑡 within the loop in line 9 each solution is feasible
to the next problem. Note that the rotation constraints remain unchanged. For the
non-overlapping constraint this is intuitive by Lemma 8.16. Rectangles and circles
remain equal. For 𝜆 ≤ 𝜆′ it holds 𝑅𝜆′(𝑠𝑖) ⊂ 𝑅𝜆(𝑠𝑖) for each 𝑖 ∈ 𝒞𝑡, and if the larger
components do not overlap, the smaller components do not overlap, too.

Lemma 8.17. For 𝜒 ∈ {−1,+1} let ℎ𝜒 be defined as in Lemma 8.4. Let 𝑠 ∈ C being
fixed, 0 ≤ 𝜆 ≤ 𝜆′ ≤ 1 and

𝑟 = (1− 𝜆) |𝑠| , 𝑤̃ = 𝜆𝑠, 𝑟′ = (1− 𝜆′) |𝑠| , 𝑤̃′ = 𝜆′𝑠.

Then for arbitrary 𝑐 ∈ C and 𝜙, 𝑑, 𝜃 ∈ R it is

ℎ𝜒
𝑟′,𝑤̃′(𝑐, 𝜙, 𝑑, 𝜃) ≤ ℎ𝜒

𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃).

Proof. We have

ℎ𝜒
𝑟′,𝑤̃′(𝑐, 𝜙, 𝑑, 𝜃)

= 𝜆′
[︁
𝜒ℜ(𝑠 exp(𝚤(𝜙− 𝜃)))− |𝑠|

]︁
+ |𝑠| − 𝑑+ ℜ(𝑐 exp(−𝚤𝜃))

≤ 𝜆
[︁
𝜒ℜ(𝑠 exp(𝚤(𝜙− 𝜃)))− |𝑠|

]︁
+ |𝑠| − 𝑑+ ℜ(𝑐 exp(−𝚤𝜃))

ℎ𝜒
𝑟,𝑤̃(𝑐, 𝜙, 𝑑, 𝜃).

Theorem 8.18. Recall the notation of (8.7). Let 𝑡 and 𝜙𝑓𝑖𝑥 be fixed, 𝜇 and 𝜇′ be
arbitrary and 𝜆′ ≥ 𝜆. If (𝑐,𝜙,𝑑,𝜃) is feasible to 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥), then it is feasible to
𝑃 (𝑡, 𝜆′, 𝜇′,𝜙𝑓𝑖𝑥).

Proof. Let (𝑐,𝜙,𝑑,𝜃) be feasible to 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥). The rotation constraints (8.11)
and the non-overlapping constraints (8.9) are the same for both problems. It remains
to show the validity of (8.10) for 𝑃 (𝑡, 𝜆′, 𝜇′,𝜙𝑓𝑖𝑥).

For circles 𝑖 ∈ 𝒞>𝑡 and rectangles 𝑖 ∈ 𝒞<𝑡 the constraint (8.10) is independent of 𝜆 and
thus trivially satisfied. Therefore, assume 𝑖 ∈ 𝒞𝑡 being a rounded rectangle 𝑅𝜆′(𝑠𝑖), i.e.
𝑟′

𝑖 = (1− 𝜆′) |𝑠𝑖| and 𝑤′
𝑖 = 𝜆𝑠𝑖. We have to show that for all 𝑤̃′ ∈ 𝐶(𝑤′

𝑖) it holds

ℎ
𝜒𝑖𝑗

𝑟′
𝑖,𝑤̃

′(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0.
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8.4 Rounded Rectangle Algorithm

We assume w.l.o.g. that 𝑤̃′ = 𝑤′
𝑖 = 𝜆′𝑠𝑖, the other cases are similar. As the solution

(𝑐,𝜙,𝑑,𝜃) is feasible to 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥), we know for all 𝑤̃ ∈ 𝐶(𝑤𝑖) and especially for
𝑤̃ = 𝑤𝑖 = 𝜆𝑠𝑖 that

ℎ
𝜒𝑖𝑗

𝑟𝑖,𝑤̃(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0.

Applying Lemma 8.17 we conclude

ℎ
𝜒𝑖𝑗

𝑟′
𝑖,𝑤̃

′(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ ℎ
𝜒𝑖𝑗

𝑟𝑖,𝑤̃(𝑐𝑖, 𝜙𝑖, 𝑑𝑖𝑗, 𝜃𝑖𝑗) ≤ 0.

Now we know that for fixed 𝑡 within the loop in line 9 each solution is feasible to the
next problem. By Lemma 8.15 we can also compute the hyperplanes in line 8 such
that the constraint (8.10) is satisfied for non-overlapping circles. Thus we know that
in the first run for a cluster 𝑡 the initial solution is feasible. Hence, in each iteration
we start with a feasible solution.

8.4.3 Orthogonal Rotation is Achieved

It remains to show that the algorithm converges to a feasible solution of the rect-
angle placement problem. In particular, it remains to show that the components are
orthogonally rotated, i.e. that for 𝜇→∞ we have sin(2𝜙𝑖)→ 0.

Therefore, we assume 𝑡 and 𝜙𝑓𝑖𝑥 to be fixed and denote 𝑥 := (𝑐,𝜙,𝑑,𝜃). Let 𝑋𝜆 be
the set of feasible points of 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥). Then we define

min wl(𝑐,𝜙)
s. t. sin(2𝜙𝑖) = 0, ∀𝑖 ∈ 𝒞𝑡

𝑥 ∈ 𝑋𝜆

(𝑃 (𝜆))

and furthermore 𝑃 (𝜆, 𝜇) := 𝑃 (𝑡, 𝜆, 𝜇,𝜙𝑓𝑖𝑥), i.e.

min wl(𝑐,𝜙) + 𝜇
∑︁
𝑖∈𝒞𝑡

sin2(2𝜙𝑖)

s. t. 𝑥 ∈ 𝑋𝜆

(𝑃 (𝜆, 𝜇))

It can be seen that (𝑃 (𝜆, 𝜇)) is the quadratic penalty formulation of (𝑃 (𝜆)). We
summarized the quadratic penalty approach for constrained non-linear programming
in Section 2.5. In this section we transfer the results to (𝑃 (𝜆, 𝜇)).

For technical proof-related reasons we first have to show that the problem can be
restricted to a compact subset.
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Definition 8.19 (Touching Path, Touching Placement). Let 𝑖 and 𝑗 be two com-
ponents. In a given placement, a touching path from 𝑖 to 𝑗 is a list (𝑙1, . . . , 𝑙𝑚) of
components such that 𝑖 = 𝑙1, 𝑗 = 𝑙𝑚 and the components 𝑙𝑘 and 𝑙𝑘+1 are touching each
other.

A placement is touching, if for each pair of components there is a touching path between
them.

Lemma 8.20. There is a global optimal placement for 𝑃 (𝜆) that is touching. The
same holds true for 𝑃 (𝜆, 𝜇).

In particular, there is a compact set 𝑌 independent of 𝜆 and 𝜇, which is guaranteed to
contain a global minimizer of 𝑃 (𝜆) and of 𝑃 (𝜆, 𝜇).

Proof. If a set of components is connected by nets, they are touching at the optimum.
Different sets of connected components can be moved together without changing the
objective value. Hence, there is a touching global optimal placement.

Now let 𝑥* be a touching placement and a global minimizer of 𝑃 (𝜆) (the case 𝑃 (𝜆, 𝜇) is
similar). Then component 𝑖 has circumcircle radius |𝑠𝑖|. In particular, all components
are in a square of edge length 𝑠 := 2∑︀𝑖∈𝒞 |𝑠𝑖|. Thus, the placement can be translated
such that

∀𝑖 ∈ 𝒞 : 𝑐𝑖 ∈ [0, 𝑠] + 𝚤[0, 𝑠],
∀𝑖 < 𝑗 ∈ 𝒞 : 𝑑𝑖𝑗 ∈ [0,

√
2𝑠].

Furthermore, all angles can be restricted to [0, 2𝜋]. Hence, with 𝑚 = 𝑛(𝑛− 1)/2 there
is global minimizer

(𝑐*,𝜙*,𝑑*,𝜃*) ∈ ([0, 𝑠] + 𝚤[0, 𝑠])𝑛 × [0, 2𝜋]𝑛 × [0,
√

2𝑠]𝑚 × [0, 2𝜋]𝑚 =: 𝑌.

In particular, the set 𝑌 is compact.

Theorem 8.21. Let 𝜆𝑘 ∈ [0, 1] and 𝜇𝑘 for 𝑘 ∈ N be sequences with lim𝑘→∞ 𝜇𝑘 = ∞
and 𝜆𝑘 = 1 for 𝑘 ≥ 𝑘0 for some 𝑘0. Furthermore, let 𝑥𝑘 be the global minimizer of
𝑃 (𝜆𝑘, 𝜇𝑘). Then any convergent subsequence of 𝑥𝑘 converges to a global minimizer of
𝑃 (1). In particular, such limit points of 𝑥𝑘 exist.

Proof. Let 𝑘 ≥ 𝑘0. Then the set 𝑋𝜆 = 𝑋1 remains fixed and the statement follows
immediately from Theorem 2.33. Furthermore, by Lemma 8.20 there is a compact set
𝑌 such that we can choose a global minimizer 𝑥𝑘 ∈ 𝑌 to 𝑃 (𝜆𝑘, 𝜇𝑘). By the Bolzano-
Weierstrass theorem, the sequence 𝑥𝑘 has a convergent subsequence.

Unfortunately, this result is of little practical value, as finding the global minimizer
of 𝑃 (𝜆𝑘, 𝜇𝑘) is almost as difficult as solving the initial rectangle placement problem
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8.4 Rounded Rectangle Algorithm

to global optimality. For this reason, it would be appealing to transfer the local con-
vergence result of Theorem 2.34, where the sequence points 𝑥𝑘 only have to be a
stationary points. Unfortunately, this result requires 𝑋 = R𝑛. However, we proof a
similar result for the convergence of local minima of 𝑃 (𝜆𝑘, 𝜇𝑘) in Theorem 8.22.

Theorem 8.22. Assume that ℑ(𝑠𝑖) > 0 for all 𝑖 ∈ 𝒞. Let 𝑡 and 𝜙𝑓𝑖𝑥 be fixed. Let
𝜆𝑘 ∈ [0, 1] and 𝜇𝑘 for 𝑘 ∈ N be a sequence with lim𝑘→∞ 𝜆𝑘 = 1 and lim𝑘→∞ 𝜇𝑘 =∞.

Let 𝑌 be the compact set defined in Lemma 8.20 and 𝑥𝑘 = (𝑐𝑘,𝜙𝑘,𝑑𝑘,𝜃𝑘) ∈ 𝑌 be a
local minimizer of 𝑃 (𝜆𝑘, 𝜇𝑘). Let 𝑥* = (𝑐*,𝜙*,𝑑*,𝜃*) be a limit point of 𝑥𝑘.

Then for all 𝑖 ∈ 𝒞𝑡 it holds cos(𝜙*
𝑖 ) = 0 or sin(𝜙*

𝑖 ) = 0.

Proof. Let 𝜈𝑖 = 1 if 𝑖 ∈ 𝒞𝑡 and 𝜈𝑖 = 0 otherwise. The objective of (𝑃 (𝜆, 𝜇)) is

𝑓𝜇(𝑐,𝜙) := wl(𝑐,𝜙) + 𝜇 pen(𝜙) with pen(𝜙) =
∑︁
𝑖∈𝒞

𝜈𝑖 sin2(2𝜙𝑖).

The gradient of wl is continuous and thus bounded on the compact set 𝑌 , i.e. there
is a 𝐾1 such that for 𝑥 ∈ 𝑌 it is ||∇wl(𝑥)||∞ ≤ 𝐾1. Furthermore, there is a 𝐾2 such
that for all 𝑥 ∈ 𝑌 we have ||𝑥||∞ ≤ 𝐾2.

For each 𝜆 the size of the rounded rectangle 𝑖 ∈ 𝒞𝑡 is defined by 𝑟𝑖 = (1 − 𝜆) |𝑠𝑖| and
𝑤𝑖 = 𝜆𝑠𝑖. By Lemma 8.12 for 𝑥 ∈ 𝑌 and |𝛼| < ℑ(𝑠𝑖)

|𝑠𝑖| the vector 𝑦𝑖(𝑥, 𝛼) = (𝑐, 𝛼𝑒𝑖,𝑑, 0)
is a feasible direction at 𝑥 in 𝑋𝜆, as

|𝛼| |𝑤𝑖| = |𝛼|𝜆 |𝑠𝑖| < |𝛼| |𝑠𝑖| < ℑ(𝑠𝑖) ≤ (1− 𝜆)ℑ(𝑠𝑖) + 𝜆ℑ(𝑠𝑖)
≤ (1− 𝜆) |𝑠𝑖|+ 𝜆ℑ(𝑠𝑖) = 𝑟𝑖 + ℑ(𝑤𝑖).

As |𝛼| < 1/
√

2 ≤ 2𝜋 ≤ 𝐾2, for such a 𝑦 = 𝑦𝑖(𝑥, 𝛼) we have

||𝑦||∞ ≤ max(||𝑥||∞ , |𝛼|) ≤ 𝐾2 =⇒
⃒⃒⃒
𝑦𝑇∇wl(𝑥)

⃒⃒⃒
≤ ||∇wl(𝑥)||∞ ||𝑦||∞ ≤ 𝐾1𝐾2.

We take a subsequence of 𝑥𝑘 converging to 𝑥* and denote this by 𝑥𝑘 again for ease
of notation. Set 𝛼 = ℑ(𝑠𝑙)

2|𝑠𝑙|
and 𝑦𝑖𝑘+ = 𝑦𝑖(𝑥𝑘,+𝛼) and 𝑦𝑖𝑘− = 𝑦𝑖(𝑥𝑘,−𝛼). For all 𝑘

the directions 𝑦𝑖𝑘+ and 𝑦𝑖𝑘− are feasible. As 𝑥𝑘 is a minimum, there does not exist a
descent direction and we conclude

0 ≤ 𝑦𝑇
𝑖𝑘+∇𝑓𝜇𝑘

(𝑥𝑘) ≤ 𝐾1𝐾2 + 𝜇𝑘𝛼𝑒𝑇
𝑖 ∇𝜙 pen(𝑥𝑘),

0 ≤ 𝑦𝑇
𝑖𝑘−∇𝑓𝜇𝑘

(𝑥𝑘) ≤ 𝐾1𝐾2 − 𝜇𝑘𝛼𝑒𝑇
𝑖 ∇𝜙 pen(𝑥𝑘),

and subsequently

𝐾1𝐾2 ≥
⃒⃒⃒
𝜇𝑘𝛼𝑒𝑇

𝑖 ∇𝜙 pen(𝑥𝑘)
⃒⃒⃒
= 4𝜇𝑘𝛼

⃒⃒⃒
sin(2𝜙𝑘

𝑖 ) cos(2𝜙𝑘
𝑖 )
⃒⃒⃒

=⇒ 0 ≤
⃒⃒⃒
sin(2𝜙𝑘

𝑖 ) cos(2𝜙𝑘
𝑖 )
⃒⃒⃒
≤ 𝐾1𝐾2

4𝜇𝑘𝛼
.

As the right term converges to 0 for 𝜇𝑘 →∞, we have sin(2𝜙*
𝑖 ) cos(2𝜙*

𝑖 ) = 0.
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Note that the algorithm might converge to a point, where the components are rotated
e.g. by 𝜋/4. This is similar to the case Theorem 2.34, where the penalty approach
also can converge to a stationary point of the constraint violation. However, it seems
unlikely that the algorithm converges to such a point, as this is a local maximum of the
constraint violation. Thus, for increasing penalty parameter we expect the algorithm
to overcome these local optima. And indeed, there is an extension of the algorithm
that assures 𝑥* to be feasible to 𝑃 (1).

Corollary 8.23. In the settings of Theorem 8.22 denote by 𝑦𝑖
𝑘 the feasible direction

defined in 𝑥𝑘 for 𝑖 ∈ 𝒞𝑡. Take a fixed 0 < 𝛿 ≤ 𝜋
4 . If for each 𝑘

𝑓𝜇𝑘
(𝑥𝑘) ≤ 𝑓𝜇𝑘

(𝑥𝑘 + 𝛿𝑦𝑖
𝑘), ∀𝑖 ∈ 𝒞𝑡,

then each limit point 𝑥* of 𝑥𝑘 is feasible to 𝑃 (1).

Proof. By Lemma 8.12 for the feasible direction 𝑦𝑖
𝑘 in 𝑥 the point 𝑥 + 𝛿𝑦𝑖

𝑘 is feasible
for each 𝛿 ≥ 0. Take a subsequence of 𝑥𝑘 converging to 𝑥* and denote it by 𝑥𝑘 again.

Then we have 𝑦𝑖
𝑘 → 𝑦𝑖 := (𝑐*, 𝛼𝑒𝑖,𝑑

*, 0). Assume that cos(2𝜙*
𝑙 ) = 0 for some 𝑙 ∈ 𝒞𝑡.

Then sin2(2𝜙*
𝑙 ) = 1 and we conclude

lim
𝑘→∞

1
𝜇𝑘

(︁
𝑓𝜇𝑘

(𝑥𝑘)− 𝑓𝜇𝑘
(𝑥𝑘 + 𝛿𝑦𝑙

𝑘)
)︁

= lim
𝑘→∞

1
𝜇𝑘

(︁
wl(𝑥𝑘)− wl(𝑥𝑘 + 𝛿𝑦𝑙

𝑘)
)︁

+ sin2(2𝜙𝑘
𝑙 )− sin2(2(𝜙𝑘

𝑙 + 𝛼𝛿))

= 1− sin2(2𝜙*
𝑙 + 2𝛼𝛿) > 0.

In particular, for large 𝑘 we have

𝑓𝜇𝑘
(𝑥𝑘 + 𝛿𝑦𝑙

𝑘) < 𝑓𝜇𝑘
(𝑥𝑘),

which contradicts the assumption.

Hence, cos(2𝜙*
𝑖 ) ̸= 0 for all 𝑖 ∈ 𝒞 and by Theorem 8.22 we conclude sin(2𝜙*

𝑖 ) = 0 and
the feasibility of 𝑥*.

Corollary 8.23 suggests the following modification of an optimization step in the
rounded rectangle algorithm. Take some small fixed 0 < 𝛿 < 𝜋

4 . Assume a local
optimum 𝑥𝑘 of a problem (𝑃 (𝜆, 𝜇)) is found. If for some 𝑖 ∈ 𝒞𝑡 we have

𝑓𝜇𝑘
(𝑥𝑘 + 𝛿𝑦𝑖

𝑘) < 𝑓𝜇𝑘
(𝑥𝑘),

restart a local optimization at 𝑥𝑘 + 𝛿𝑦𝑖
𝑘. If the local optimization is a feasible descent

method, this algorithm is guaranteed to converge to a feasible solution of the rectangle
placement problem.

However, this problem is irrelevant in practice. The algorithm only might converge to
some point with cos 2𝜙*

𝑙 = 0 if it stays in this stationary point in all iterations. Due
to limited numerical accuracy of computers, this does not happen in practice.
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8.5 Numerical Results

In this section we evaluate the rounded rectangle algorithm stated in Algorithm 8. In
Section 8.5.1 we described details of the implemented algorithms and the measured
values. In Section 8.5.2 we analyze the overall performance of the algorithm in terms
of running time and wire length. In Section 8.5.3 the different phases of the algorithms
are compared. In Section 8.5.4 for different circuit instances we present the placement
after different phases of the algorithm.

8.5.1 Applied Methods and Measurements

For each of the instances described in Section 2.8 with up to 243 components we ran
the algorithm for 100 random initial solutions.

The components were clustered into 2 clusters as follows. To each component 𝑖 ∈ 𝒞
the scalar value ln(|𝑠𝑖|) is assigned. Then iteratively the clusters with closest distance
were unified, until there were two remaining clusters. Table 8.1 on page 192 shows the
number of components per cluster and their average size.

The initial placement generation was done by the configuration ECSLS / MBH 5
described in Section 7.7.2, we briefly summarize this setting here. Starting from a
random initial solution we apply the global invariant attractor repeller model with
repeller factor 𝛼 = 1 and feasibility stretch as described in Section 7.4. This solution
is optimized by the constrained non-linear program 𝐶𝑃𝑃 described in Section 7.5.
Subsequently, we performed equal circle swap local search and monotonic basin hop-
ping with maximum 5 fails as described in Section 7.6. The final solution of this circle
placement algorithm is taken as the initial solution for the refinement phase of the
rounded rectangle algorithm.

The sequence (𝜇, 𝜆) in line 9 of the algorithm was chosen as

(𝜇, 𝜆) = {(0; 0.0), (0; 0.1), (1; 0.3), (10; 0.95), (∞; 1.0)}, (8.12)

where for 𝜇 =∞ the orthogonal rotation is removed from the objective and added as
constraint to Ipopt. The run (0; 0.0) is introduced for technical reasons: Geometrically
this problem is equivalent to the last iteration of the previous phase, hence we start
this run at a local optimum and Ipopt can compute the dual variables very quickly. In
the remaining optimization runs for this cluster, we make a warm start with initialized
duals. In the figures we include this run in the run (𝜇, 𝜆) = (0; 0.1).

We configured Ipopt with the settings 𝑡𝑜𝑙 = 10−3 and 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑡𝑜𝑙 = 5 · 10−3 and
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 30000, which was never reached. As Ipopt is a filter method, it allows
the solution to become infeasible to reduce the objective value. In the sequence of
non-linear programs, we start close to the local optimum and reduce the amount
of allowed infeasibility by setting 𝑡ℎ𝑒𝑡𝑎_𝑚𝑎𝑥_𝑓𝑎𝑐𝑡 = 10. For details we refer to
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Circuit |𝒞1| |𝒞2| avg𝑖∈𝒞1 |𝑠𝑖| avg𝑖∈𝒞2 |𝑠𝑖|
D0019 14 5 5.617 0.464
D0034 15 19 5.346 0.464
D0059 17 42 4.906 0.464
D0078 19 59 4.559 0.464
D0104 19 85 4.559 0.464
D0138 14 124 5.617 0.513
D0183 14 169 5.617 0.501
D0243 14 229 5.617 0.506
E0031 5 26 2.193 0.484
S0041 11 30 2.768 0.352
V0093 6 87 3.948 0.537
M0057 5 52 1.917 0.645

Table 8.1: Clustering of the circuits. In the second and third column, the number of
components in each clusters is shown. In the fourth and fifth column the
average size of the components per cluster is stated.

[Wächter; Biegler 2006]. The rare cases of convergence to infeasible solutions could be
avoided by using a solver which stays feasible in every iteration, therefore these runs are
removed from the evaluation. Additionally, we started with a small constraint penalty
parameter 𝑚𝑢_𝑖𝑛𝑖𝑡 = 0.001 and performed a warm start if the problem structure
has not changed, i.e. the cluster 𝑡 remained the same and rotation was considered as
quadratic penalty term.

After each step we measured the CPU time and the wire length without the or-
thogonal rotation penalty. In particular, we use the terms objective and wire length
synonymously, even for runs with rotation penalty. As the circle placement algorithm
has been studied in Chapter 7, we consider it as a single step here and do not analyze
its different phases.

8.5.2 Overall Performance of the Algorithm

The overall performance of the algorithm is shown in Figure 8.7, the solution quality
in Figure 8.7c and Table 8.2 on page 193. We do not have a lower bound and compare
the runs against the best known result for this instance. It turns out that the algorithm
is robust. While the worst case behavior might be poor, even for larger instances most
of the times the objective is less than 40% away from the best known solution.

In Figure 8.7a the absolute CPU time in seconds is shown, in Figure 8.7b the CPU
time divided by the CPU time of the initial solution generation. As expected, the
absolute CPU time increases with the number of circles. In Figure 8.7b it can be seen
that, except for some outliers, the algorithm is robust and usually takes less than 8
times as long as for the initial solution generation.
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Figure 8.7: In (a): quartiles of the CPU time in seconds versus the number of circles.
In (b): quartiles of the ratio of the final CPU time and the CPU time of the
initial solution. In (c): quartiles of the ratio of the final objective divided
by the best known objective for this instance.

Instance min quart(0.25%) median quart(0.75%) max
E0031 1.0000 1.0749 1.1375 1.2140 1.7987
S0041 1.0000 1.1550 1.2081 1.2597 1.5455
M0057 1.0000 1.1676 1.2899 1.3772 1.7612
V0093 1.0000 1.0340 1.0680 1.1207 2.5133

Table 8.2: Quartiles of the ratio of the final objective divided by the best known ob-
jective for this instance.
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8.5.3 Analysis of the Different Phases

In Figure 8.8 the behavior of the algorithm for increasing number of circles is shown.
The different graphs are labeled by a triple (𝑡, 𝜇, 𝜆) where 𝑡 is the cluster currently
refined from circles to rectangles and 𝜇 and 𝜆 as in (8.12).

Figure 8.8a shows the median total CPU time in seconds versus the number of circles.
The initial circle placement is colored green, the runs for the first cluster blue and
for the second cluster red. In Figure 8.8b the CPU time is visualized, too. However,
there we divided the CPU time of each phase by the CPU time required for the initial
circle placement. In the graphics the median of these values is shown. Figure 8.8c
visualizes the median wire length after each phase. Also not strictly necessary, the wire
length reduces in each step, i.e. the improvement by refinement of the components to
rectangles compensates for the more orthogonal rotation.

In Figure 8.8a we recognize the expected increase in running time for larger problem
instances. This seams to be proportional to the increase for the initial circle placement
solution. Indeed in Figure 8.8b we observe that, except for small instances, the ratio
of the times spent in different phases of the algorithm remains approximately equal.
In particular, in the refinement of the components of cluster 𝐶2 approximately half of
the total running time of the algorithm is spent.

Figure 8.8c shows that after run 1− 10− 0.95 where the components of 𝐶1 are almost
refined to rectangles, the wire length is not significantly reduced. Additionally, in
Figure 8.9 the relation of the solutions of different phases is displayed for each run.
Figure 8.9a shows that the objectives for the initial circle placement and after the
refinement of cluster 1 is related but still contains some diversification. In contrast, in
Figure 8.9b is can be seen that the final objective and the objective after refinement
of the components of the first cluster is strongly correlated.

Hence, in the later phases the algorithm spends much time for little improvement
in the objective and less important decisions. This is due to the large number of
components in the second cluster and the significant increase of the number of variables
and constraints to model them as rounded rectangles. In Table 8.3 on page 196 the
size of the non-linear programs for the different phases is shown. In particular, the
increase of the number of variables and constraints for the refinement of components
of 𝒞2 can be seen.
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Figure 8.8: On the 𝑥-axis the number of circles is displayed. On the 𝑦-axis is shown: in
(a) the median total CPU time in seconds; in (b) then median of the ratio
of the total CPU time and the CPU time of the initial solution generation;
in (c) the median ratio of the wire length after the run and the final wire
length. The labels on the right are 𝑡− 𝜇𝑟𝑜𝑡 − 𝜆.
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Figure 8.9: Comparison of the objective ratios, i.e. the ratio of the solution objective
divided by the best known objective for this instance and this run. In (a):
objective ratio 1−∞−1.0 (on 𝑦-axis) versus objective ratio of initial circle
placement. In (b): objective ratio 2−∞− 1.0 (on 𝑦-axis) versus objective
ratio of 1−∞− 1.0 (on 𝑥-axis).

Circles 𝑡 = 1 𝑡 = 2
Circuit |𝒞1| |𝒞2| #cons #var #cons #var #cons #var
D0019 14 5 171 57 1088 379 1368 399
D0034 15 19 561 102 2436 882 4488 1224
D0059 17 42 1711 177 5519 1877 13688 3599
D0078 19 59 3003 234 8684 2818 24024 6240
D0104 19 85 5356 312 13013 3884 42848 11024
D0138 14 124 9453 414 17034 4068 75624 19320
D0183 14 169 16653 549 26754 5463 133224 33855
D0243 14 229 29403 729 42864 7323 235224 59535
E0031 5 26 465 93 1055 373 3720 1023
S0041 11 30 820 123 2525 893 6560 1763
V0093 6 87 4278 279 6471 1353 34224 8835
M0057 5 52 1596 171 2706 711 12768 3363

Table 8.3: Number of variables and number of constraints for the different phases of
the algorithm.
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8.5.4 Placement Examples after the Different Phases

The Figures 8.10, 8.11 and 8.12 show the main steps of the algorithm after different
phases. It can be seen, how the structure of the initial circle placement is preserved
within the refinement steps. Furthermore, the refinement of the components 𝒞2 has
little influence on the topology of the placement.

8.5.5 Conclusion

In this section we evaluated the rounded rectangle algorithm numerically. We showed
that it can handle problem instances with up to 250 components and yield good
solution quality in acceptable running time.

We showed, that there is a correlation between the quality of the initial circle place-
ment and the quality of the final solution. In particular, we demonstrated that the
algorithm spends a large amount of running time in the refinement of the smaller
components, where there is little improvement in the wire length and the solution
structure essentially remains unchanged.

We did not evaluate multiple shooting approaches, as we focused on the circle to
rectangle refinement phase in this chapter. However, the running time of the initial
circle placement is short compared to the overall running time. Hence, for practical
algorithms it might be advantageously, to generate several circle placements and start
the refinement from the best of these placements.
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(a) Circle. (b) 1− 1− 0.3. (c) 1− 10− 0.95.

(d) 2− 1− 0.3. (e) 2− 10− 0.95. (f) 2−∞− 1.

Figure 8.10: Steps of the rounded rectangle algorithm for an artificial instance.
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(a) Circle. (b) 1− 1− 0.3. (c) 1− 10− 0.95.

(d) 1−∞− 1. (e) 2− 1− 0.3. (f) 2−∞− 1.

Figure 8.11: Important steps of the rounded rectangle algorithm for M0057.
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(a) Circle. (b) 1− 0− 0.1.

(c) 1− 1− 0.3. (d) 1−∞− 1.

(e) 2− 1− 0.3. (f) 2−∞− 1.

Figure 8.12: Important steps of the rounded rectangle algorithm for V0093.
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9 Conclusion and Outlook

This thesis has been motivated by the lack of algorithms for medium sized placement
problems with 100 to 250 components per module side in 2.5D System-in-Package
design. For these problems, we developed the rounded rectangle algorithm which solves
a sequence of non-linear programs. In this thesis we considered different aspects of
this algorithm, which are themselves of theoretical and practical interest. We conclude
this thesis by summarizing the main results, and present opportunities for further
research.

9.1 Conclusion

The main problems considered in this thesis are the circle rotation problem, the circle
placement problem and the rectangle placement problem. The circle rotation problem
is crucial for local improvement steps in the circle placement problem, which itself is
an essential part of our algorithm for the rectangle placement problem. We evaluated
all algorithms for real world problem instances.

We proved the NP-hardness of the circle rotation problem and its equivalence to a
minimization problem known in the literature. We developed several local non-linear
solution algorithms and showed that they find close-to-optimal solutions for real world
problem instances efficiently. Furthermore, we proposed a branch and bound algorithm
with efficient lower and upper bound estimations. In particular, we developed a novel
domain reduction algorithm that enables the branch and bound algorithm to solve a
wide range of problem instances to global optimality in very short running time.

For the circle placement problem we proved that our non-linear formulation satis-
fies the Mangasarian-Fromovitz constraint qualification (MFCQ). To face the non-
convexity of the problem, we enhanced algorithms from the literature. In particular,
we extended and improved the attractor repeller model and showed that our novel
scaling invariant model yield significantly better solutions than previously existing
models. Applying our circle rotation algorithms, we developed local search and mono-
tonic basin hopping algorithms to overcome local optima, and we demonstrated that
they notably improve the solution quality while only moderately increasing the run-
ning time.
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9 Conclusion and Outlook

We presented the rounded rectangle algorithms for the rectangle placement problem.
Starting from a solution of the circle placement problem, we explained how to refine
the circles to rectangles in a sequence of non-linear programs. We showed that each
of these non-linear programs satisfies MFCQ and generates a feasible solution to the
next problem. Furthermore, we proved that the algorithm converges to a solution for
the rectangle placement problem. We numerically demonstrated that the algorithm
yields solutions of good quality in moderate running time for instances with up to 250
components.

9.2 Outlook

For further research, there are several open questions regarding the rounded rectangle
algorithm.

The algorithm spends most of the time in later iterations, where the wire length im-
provement and the change of the solution is small. In contrast, solvers based on meta-
heuristics such as simulated annealing or local search have their strength in improving
existing solutions locally. A hybrid approach seems promising, where the exploration
is done by the rounded rectangle algorithm, but after the refinement of larger com-
ponents to rectangles, local search strategies for placing the smaller rectangles are
used.

For the circle placement problem the number of non-overlapping constraints increases
quadratically in the number circles. Additionally, for the rectangle placement prob-
lem also the number of variables grows quadratically. However, once an approximate
placement is generated, most of the constraints never become active. In trust region
approaches the constraints which can not be active within the trust region can be
efficiently identified and, hence, ignored within the trust region. Another approach
is to compute the Voronoi diagram for an approximate placement and preserving its
structure in the remaining algorithm. This might be done by adding the vertices of
the Voronoi diagram and possibly additional intermediate points as variables to the
optimization problem and enforcing all components to stay in their Voronoi cells. For
this approach the increase in constraints and variables is linear.
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